Hyeonseok Jeon
2024
Will LLMs Sink or Swim? Exploring Decision-Making Under Pressure
Kyusik Kim
|
Hyeonseok Jeon
|
Jeongwoo Ryu
|
Bongwon Suh
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in Large Language Models (LLMs) have demonstrated their ability to simulate human-like decision-making, yet the impact of psychological pressures on their decision-making processes remains underexplored. To understand how psychological pressures influence decision-making in LLMs, we tested LLMs on various high-level tasks, using both explicit and implicit pressure prompts. Moreover, we examined LLM responses under different personas to compare with human behavior under pressure. Our findings show that pressures significantly affect LLMs’ decision-making, varying across tasks and models. Persona-based analysis suggests some models exhibit human-like sensitivity to pressure, though with some variability. Furthermore, by analyzing both the responses and reasoning patterns, we identified the values LLMs prioritize under specific social pressures. These insights deepen our understanding of LLM behavior and demonstrate the potential for more realistic social simulation experiments.