Hyundong Cho


2023

pdf bib
RECAP: Retrieval-Enhanced Context-Aware Prefix Encoder for Personalized Dialogue Response Generation
Shuai Liu | Hyundong Cho | Marjorie Freedman | Xuezhe Ma | Jonathan May
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Endowing chatbots with a consistent persona is essential to an engaging conversation, yet it remains an unresolved challenge. In this work, we propose a new retrieval-enhanced approach for personalized response generation. Specifically, we design a hierarchical transformer retriever trained on dialogue domain data to perform personalized retrieval and a context-aware prefix encoder that fuses the retrieved information to the decoder more effectively. Extensive experiments on a real-world dataset demonstrate the effectiveness of our model at generating more fluent and personalized responses. We quantitatively evaluate our model’s performance under a suite of human and automatic metrics and find it to be superior compared to state-of-the-art baselines on English Reddit conversations.

pdf bib
Analyzing Norm Violations in Live-Stream Chat
Jihyung Moon | Dong-Ho Lee | Hyundong Cho | Woojeong Jin | Chan Park | Minwoo Kim | Jonathan May | Jay Pujara | Sungjoon Park
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35%.

pdf bib
Continual Dialogue State Tracking via Example-Guided Question Answering
Hyundong Cho | Andrea Madotto | Zhaojiang Lin | Khyathi Chandu | Satwik Kottur | Jing Xu | Jonathan May | Chinnadhurai Sankar
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Dialogue systems are frequently updated to accommodate new services, but naively updating them by continually training with data for new services in diminishing performance on previously learnt services. Motivated by the insight that dialogue state tracking (DST), a crucial component of dialogue systems that estimates the user’s goal as a conversation proceeds, is a simple natural language understanding task, we propose reformulating it as a bundle of granular example-guided question answering tasks to minimize the task shift between services and thus benefit continual learning. Our approach alleviates service-specific memorization and teaches a model to contextualize the given question and example to extract the necessary information from the conversation. We find that a model with just 60M parameters can achieve a significant boost by learning to learn from in-context examples retrieved by a retriever trained to identify turns with similar dialogue state changes. Combining our method with dialogue-level memory replay, our approach attains state of the art performance on DST continual learning metrics without relying on any complex regularization or parameter expansion methods.

2022

pdf bib
Reflect, Not Reflex: Inference-Based Common Ground Improves Dialogue Response Quality
Pei Zhou | Hyundong Cho | Pegah Jandaghi | Dong-Ho Lee | Bill Yuchen Lin | Jay Pujara | Xiang Ren
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Human communication relies on common ground (CG), the mutual knowledge and beliefs shared by participants, to produce coherent and interesting conversations. In this paper, we demonstrate that current response generation (RG) models produce generic and dull responses in dialogues because they act reflexively, failing to explicitly model CG, both due to the lack of CG in training data and the standard RG training procedure. We introduce Reflect, a dataset that annotates dialogues with explicit CG (materialized as inferences approximating shared knowledge and beliefs) and solicits 9k diverse human-generated responses each following one common ground. Using Reflect, we showcase the limitations of current dialogue data and RG models: less than half of the responses in current data is rated as high quality (sensible, specific, and interesting) and models trained using this data have even lower quality, while most Reflect responses are judged high quality. Next, we analyze whether CG can help models produce better quality responses by using Reflect CG to guide RG models. Surprisingly, we find that simply prompting GPT3 to “think” about CG generates 30% more quality responses, showing promising benefits to integrating CG into the RG process.

pdf bib
Know Thy Strengths: Comprehensive Dialogue State Tracking Diagnostics
Hyundong Cho | Chinnadhurai Sankar | Christopher Lin | Kaushik Sadagopan | Shahin Shayandeh | Asli Celikyilmaz | Jonathan May | Ahmad Beirami
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent works that revealed the vulnerability of dialogue state tracking (DST) models to distributional shifts have made holistic comparisons on robustness and qualitative analyses increasingly important for understanding their relative performance. We present our findings from standardized and comprehensive DST diagnoses, which have previously been sparse and uncoordinated, using our toolkit, CheckDST, a collection of robustness tests and failure mode analytics. We discover that different classes of DST models have clear strengths and weaknesses, where generation models are more promising for handling language variety while span-based classification models are more robust to unseen entities. Prompted by this discovery, we also compare checkpoints from the same model and find that the standard practice of selecting checkpoints using validation loss/accuracy is prone to overfitting and each model class has distinct patterns of failure. Lastly, we demonstrate how our diagnoses motivate a pre-finetuning procedure with non-dialogue data that offers comprehensive improvements to generation models by alleviating the impact of distributional shifts through transfer learning.

2021

pdf bib
Agenda Pushing in Email to Thwart Phishing
Hyundong Cho | Genevieve Bartlett | Marjorie Freedman
Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering (DialDoc 2021)

In this work, we draw parallels between automatically responding to emails for combating social-engineering attacks and document-grounded response generation and lay out the blueprint of our approach. Phishing emails are longer than dialogue utterances and often contain multiple intents. Hence, we need to make decisions similar to those for document-grounded responses in deciding what parts of long text to use and how to address each intent to generate a knowledgeable multi-component response that pushes scammers towards agendas that aid in attribution and linking attacks. We propose , a hybrid system that uses customizable probabilistic finite state transducers to orchestrate pushing agendas coupled with neural dialogue systems that generate responses to unexpected prompts, as a promising solution to this end. We emphasize the need for this system by highlighting each component’s strengths and weaknesses and show how they complement each other.

pdf bib
Probing Commonsense Explanation in Dialogue Response Generation
Pei Zhou | Pegah Jandaghi | Hyundong Cho | Bill Yuchen Lin | Jay Pujara | Xiang Ren
Findings of the Association for Computational Linguistics: EMNLP 2021

Humans use commonsense reasoning (CSR) implicitly to produce natural and coherent responses in conversations. Aiming to close the gap between current response generation (RG) models and human communication abilities, we want to understand why RG models respond as they do by probing RG model’s understanding of commonsense reasoning that elicits proper responses. We formalize the problem by framing commonsense as a latent variable in the RG task and using explanations for responses as textual form of commonsense. We collect 6k annotated explanations justifying responses from four dialogue datasets and ask humans to verify them and propose two probing settings to evaluate RG models’ CSR capabilities. Probing results show that models fail to capture the logical relations between commonsense explanations and responses and fine-tuning on in-domain data and increasing model sizes do not lead to understanding of CSR for RG. We hope our study motivates more research in making RG models emulate the human reasoning process in pursuit of smooth human-AI communication.

2020

pdf bib
Grounding Conversations with Improvised Dialogues
Hyundong Cho | Jonathan May
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Effective dialogue involves grounding, the process of establishing mutual knowledge that is essential for communication between people. Modern dialogue systems are not explicitly trained to build common ground, and therefore overlook this important aspect of communication. Improvisational theater (improv) intrinsically contains a high proportion of dialogue focused on building common ground, and makes use of the yes-and principle, a strong grounding speech act, to establish coherence and an actionable objective reality. We collect a corpus of more than 26,000 yes-and turns, transcribing them from improv dialogues and extracting them from larger, but more sparsely populated movie script dialogue corpora, via a bootstrapped classifier. We fine-tune chit-chat dialogue systems with our corpus to encourage more grounded, relevant conversation and confirm these findings with human evaluations.