Hyunjoon Cheon
2023
GDA: Grammar-based Data Augmentation for Text Classification using Slot Information
Joonghyuk Hahn
|
Hyunjoon Cheon
|
Elizabeth Orwig
|
Su-Hyeon Kim
|
Sang-Ki Ko
|
Yo-Sub Han
Findings of the Association for Computational Linguistics: EMNLP 2023
Recent studies propose various data augmentation approaches to resolve the low-resource problem in natural language processing tasks. Data augmentation is a successful solution to this problem and recent strategies give variation on sentence structures to boost performance. However, these approaches can potentially lead to semantic errors and produce semantically noisy data due to the unregulated variation of sentence structures. In an effort to combat these semantic errors, we leverage slot information, the representation of the context of keywords from a sentence, and form a data augmentation strategy which we propose, called GDA. Our strategy employs algorithms that construct and manipulate rules of context-aware grammar, utilizing this slot information. The algorithms extract recurrent patterns by distinguishing words with slots and form the “rules of grammar”—a set of injective relations between a sentence’s semantics and its syntactical structure—to augment the dataset. The augmentation is done in an automated manner with the constructed rules and thus, GDA is explainable and reliable without any human intervention. We evaluate GDA with state-of-the-art data augmentation techniques, including those using pre-trained language models, and the result illustrates that GDA outperforms all other data augmentation methods by 19.38%. Extensive experiments show that GDA is an effective data augmentation strategy that incorporates word semantics for more accurate and diverse data.
2021
Self-Training using Rules of Grammar for Few-Shot NLU
Joonghyuk Hahn
|
Hyunjoon Cheon
|
Kyuyeol Han
|
Cheongjae Lee
|
Junseok Kim
|
Yo-Sub Han
Findings of the Association for Computational Linguistics: EMNLP 2021
We tackle the problem of self-training networks for NLU in low-resource environment—few labeled data and lots of unlabeled data. The effectiveness of self-training is a result of increasing the amount of training data while training. Yet it becomes less effective in low-resource settings due to unreliable labels predicted by the teacher model on unlabeled data. Rules of grammar, which describe the grammatical structure of data, have been used in NLU for better explainability. We propose to use rules of grammar in self-training as a more reliable pseudo-labeling mechanism, especially when there are few labeled data. We design an effective algorithm that constructs and expands rules of grammar without human involvement. Then we integrate the constructed rules as a pseudo-labeling mechanism into self-training. There are two possible scenarios regarding data distribution: it is unknown or known in prior to training. We empirically demonstrate that our approach substantially outperforms the state-of-the-art methods in three benchmark datasets for both scenarios.
Search
Co-authors
- Joonghyuk Hahn 2
- Yo-Sub Han 2
- Elizabeth Orwig 1
- Su-Hyeon Kim 1
- Sang-Ki Ko 1
- show all...