Hyunsouk Cho


2024

pdf bib
Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation
Dongjin Kang | Sunghwan Kim | Taeyoon Kwon | Seungjun Moon | Hyunsouk Cho | Youngjae Yu | Dongha Lee | Jinyoung Yeo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Emotional Support Conversation (ESC) is a task aimed at alleviating individuals’ emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.

2023

pdf bib
GTA: Gated Toxicity Avoidance for LM Performance Preservation
Heegyu Kim | Hyunsouk Cho
Findings of the Association for Computational Linguistics: EMNLP 2023

Caution: This paper includes offensive words that could potentially cause unpleasantness. The fast-paced evolution of generative language models such as GPT-4 has demonstrated outstanding results in various NLP generation tasks. However, due to the potential generation of offensive words related to race or gender, various Controllable Text Generation (CTG) methods have been proposed to mitigate the occurrence of harmful words. However, existing CTG methods not only reduce toxicity but also negatively impact several aspects of the language model’s generation performance, including topic consistency, grammar, and perplexity. This paper explores the limitations of previous methods and introduces a novel solution in the form of a simple Gated Toxicity Avoidance (GTA) that can be applied to any CTG method. We also evaluate the effectiveness of the proposed GTA by comparing it with state-of-the-art CTG methods across various datasets. Our findings reveal that gated toxicity avoidance efficiently achieves comparable levels of toxicity reduction to the original CTG methods while preserving the generation performance of the language model.

2021

pdf bib
Self-Supervised Multimodal Opinion Summarization
Jinbae Im | Moonki Kim | Hoyeop Lee | Hyunsouk Cho | Sehee Chung
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recently, opinion summarization, which is the generation of a summary from multiple reviews, has been conducted in a self-supervised manner by considering a sampled review as a pseudo summary. However, non-text data such as image and metadata related to reviews have been considered less often. To use the abundant information contained in non-text data, we propose a self-supervised multimodal opinion summarization framework called MultimodalSum. Our framework obtains a representation of each modality using a separate encoder for each modality, and the text decoder generates a summary. To resolve the inherent heterogeneity of multimodal data, we propose a multimodal training pipeline. We first pretrain the text encoder–decoder based solely on text modality data. Subsequently, we pretrain the non-text modality encoders by considering the pretrained text decoder as a pivot for the homogeneous representation of multimodal data. Finally, to fuse multimodal representations, we train the entire framework in an end-to-end manner. We demonstrate the superiority of MultimodalSum by conducting experiments on Yelp and Amazon datasets.

2020

pdf bib
SQuAD2-CR: Semi-supervised Annotation for Cause and Rationales for Unanswerability in SQuAD 2.0
Gyeongbok Lee | Seung-won Hwang | Hyunsouk Cho
Proceedings of the Twelfth Language Resources and Evaluation Conference

Existing machine reading comprehension models are reported to be brittle for adversarially perturbed questions when optimizing only for accuracy, which led to the creation of new reading comprehension benchmarks, such as SQuAD 2.0 which contains such type of questions. However, despite the super-human accuracy of existing models on such datasets, it is still unclear how the model predicts the answerability of the question, potentially due to the absence of a shared annotation for the explanation. To address such absence, we release SQuAD2-CR dataset, which contains annotations on unanswerable questions from the SQuAD 2.0 dataset, to enable an explanatory analysis of the model prediction. Specifically, we annotate (1) explanation on why the most plausible answer span cannot be the answer and (2) which part of the question causes unanswerability. We share intuitions and experimental results that how this dataset can be used to analyze and improve the interpretability of existing reading comprehension model behavior.

2018

pdf bib
Visual Choice of Plausible Alternatives: An Evaluation of Image-based Commonsense Causal Reasoning
Jinyoung Yeo | Gyeongbok Lee | Gengyu Wang | Seungtaek Choi | Hyunsouk Cho | Reinald Kim Amplayo | Seung-won Hwang
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)