Hannah Recknor
2025
CLAIMCHECK: How Grounded are LLM Critiques of Scientific Papers?
Jiefu Ou
|
William Gantt Walden
|
Kate Sanders
|
Zhengping Jiang
|
Kaiser Sun
|
Jeffrey Cheng
|
William Jurayj
|
Miriam Wanner
|
Shaobo Liang
|
Candice Morgan
|
Seunghoon Han
|
Weiqi Wang
|
Chandler May
|
Hannah Recknor
|
Daniel Khashabi
|
Benjamin Van Durme
Findings of the Association for Computational Linguistics: EMNLP 2025
A core part of scientific peer review involves providing expert critiques that directly assess the scientific claims a paper makes. While it is now possible to automatically generate plausible (if generic) reviews, ensuring that these reviews are sound and grounded in the papers’ claims remains challenging. To facilitate LLM benchmarking on these challenges, we introduce CLAIMCHECK, an annotated dataset of NeurIPS 2023 and 2024 submissions and reviews mined from OpenReview. CLAIMCHECK is richly annotated by ML experts for weakness statements in the reviews and the paper claims that they dispute, as well as fine-grained labels of the validity, objectivity, and type of the identified weaknesses. We benchmark several LLMs on three claim-centric tasks supported by CLAIMCHECK, requiring models to (1) associate weaknesses with the claims they dispute, (2) predict fine-grained labels for weaknesses and rewrite the weaknesses to enhance their specificity, and (3) verify a paper’s claims with grounded reasoning. Our experiments reveal that cutting-edge LLMs, while capable of predicting weakness labels in (2), continue to underperform relative to human experts on all other tasks.
2024
Grounding Partially-Defined Events in Multimodal Data
Kate Sanders
|
Reno Kriz
|
David Etter
|
Hannah Recknor
|
Alexander Martin
|
Cameron Carpenter
|
Jingyang Lin
|
Benjamin Van Durme
Findings of the Association for Computational Linguistics: EMNLP 2024
How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
Search
Fix author
Co-authors
- Benjamin Van Durme 2
- Kate Sanders 2
- Cameron Carpenter 1
- Jeffrey Cheng 1
- David Etter 1
- show all...