2025
pdf
bib
abs
ActionStudio: A Lightweight Framework for Data and Training of Large Action Models
Jianguo Zhang
|
Thai Quoc Hoang
|
Ming Zhu
|
Zuxin Liu
|
Shiyu Wang
|
Tulika Manoj Awalgaonkar
|
Akshara Prabhakar
|
Haolin Chen
|
Weiran Yao
|
Zhiwei Liu
|
Juntao Tan
|
Juan Carlos Niebles
|
Shelby Heinecke
|
Huan Wang
|
Silvio Savarese
|
Caiming Xiong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Action models are essential for enabling autonomous agents to perform complex tasks. However, training such models remains challenging due to the diversity of agent environments and the complexity of noisy agentic data. Existing infrastructure offers limited support for scalable, agent-specific fine-tuning and standardized agent data processing. We introduce ActionStudio, a lightweight and extensible data and training framework designed for large action models. ActionStudio unifies diverse agent trajectories using our proposed Unified Format 2.0, supports a range of training workflows with optimized multi-node distributed setup, and integrates robust preprocessing and real-time verification tools. ActionStudio demonstrates up to 9× higher throughput compared to existing agentic training frameworks, and our trained models yield top performances across public and realistic agent benchmarks. To support the broader research community, we open-source the ActionStudio framework and release actionstudio-98k, a curated dataset of 98k high-quality trajectories.
pdf
bib
abs
MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
Zhiwei Liu
|
Jielin Qiu
|
Shiyu Wang
|
Jianguo Zhang
|
Zuxin Liu
|
Roshan Ram
|
Haolin Chen
|
Weiran Yao
|
Shelby Heinecke
|
Silvio Savarese
|
Huan Wang
|
Caiming Xiong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
The rapid adoption of Large Language Models (LLMs) as intelligent agents has underscored the necessity for robust evaluation frameworks capable of assessing agent performance in realistic, interactive environments. Existing evaluation methodologies often suffer from limitations such as static task benchmarks, limited scope, and inadequate integration with practical applications. In response, we introduce MCPEval, an open-source, Model Context Protocol (MCP)-based evaluation framework specifically tailored for comprehensive and systematic assessment of LLM-powered agents. MCPEval standardizes evaluations across diverse domains through automated task generation and verification, supports multiple performance metrics, and integrates seamlessly with native agent capabilities. We empirically validate the effectiveness of MCPEval across five distinct real-world domains, highlighting significant variations in performance across various LLM architectures and prompting strategies. Our results illustrate the framework’s capacity to uncover nuanced performance patterns and identify domain-specific strengths and weaknesses, providing valuable insights beyond traditional binary success metrics. We publicly release MCPEval to foster reproducible research and promote standardized evaluation practices within the LLM agent community.
pdf
bib
abs
xLAM: A Family of Large Action Models to Empower AI Agent Systems
Jianguo Zhang
|
Tian Lan
|
Ming Zhu
|
Zuxin Liu
|
Thai Quoc Hoang
|
Shirley Kokane
|
Weiran Yao
|
Juntao Tan
|
Akshara Prabhakar
|
Haolin Chen
|
Zhiwei Liu
|
Yihao Feng
|
Tulika Manoj Awalgaonkar
|
Rithesh R N
|
Zeyuan Chen
|
Ran Xu
|
Juan Carlos Niebles
|
Shelby Heinecke
|
Huan Wang
|
Silvio Savarese
|
Caiming Xiong
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Autonomous agents powered by large language models (LLMs) have attracted significant research interest. However, the open-source community faces many challenges in developing specialized models for agent tasks, driven by the scarcity of high-quality agent datasets and the absence of standard protocols in this area. We introduce xLAM, a series of large action models designed for AI agent tasks. The xLAM series includes five models with both dense and mixture-of-expert architectures, ranging from 1B to 8x22B parameters, trained using a scalable, flexible pipeline that unifies, augments, and synthesizes diverse datasets to enhance AI agents’ generalizability and performance across varied environments. Our experimental results demonstrate that xLAM consistently delivers exceptional performance across multiple agent ability benchmarks, notably securing the 1st position on the Berkeley Function-Calling Leaderboard, outperforming GPT-4, Claude-3, and many other models in terms of tool use. By releasing the xLAM series, we aim to advance the performance of open-source LLMs for autonomous AI agents, potentially accelerating progress and democratizing access to high-performance models for agent tasks.
2023
pdf
bib
abs
HyperMixer: An MLP-based Low Cost Alternative to Transformers
Florian Mai
|
Arnaud Pannatier
|
Fabio Fehr
|
Haolin Chen
|
Francois Marelli
|
Francois Fleuret
|
James Henderson
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Transformer-based architectures are the model of choice for natural language understanding, but they come at a significant cost, as they have quadratic complexity in the input length, require a lot of training data, and can be difficult to tune. In the pursuit of lower costs, we investigate simple MLP-based architectures. We find that existing architectures such as MLPMixer, which achieves token mixing through a static MLP applied to each feature independently, are too detached from the inductive biases required for natural language understanding. In this paper, we propose a simple variant, HyperMixer, which forms the token mixing MLP dynamically using hypernetworks. Empirically, we demonstrate that our model performs better than alternative MLP-based models, and on par with Transformers. In contrast to Transformers, HyperMixer achieves these results at substantially lower costs in terms of processing time, training data, and hyperparameter tuning.