Hongxin Hu


2025

pdf bib
HVGuard: Utilizing Multimodal Large Language Models for Hateful Video Detection
Yiheng Jing | Mingming Zhang | Yong Zhuang | Jiacheng Guo | Juan Wang | Xiaoyang Xu | Wenzhe Yi | Keyan Guo | Hongxin Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The rapid growth of video platforms has transformed information dissemination and led to an explosion of multimedia content. However, this widespread reach also introduces risks, as some users exploit these platforms to spread hate speech, which is often concealed through complex rhetoric, making hateful video detection a critical challenge. Existing detection methods rely heavily on unimodal analysis or simple feature fusion, struggling to capture cross-modal interactions and reason through implicit hate in sarcasm and metaphor. To address these limitations, we propose HVGuard, the first reasoning-based hateful video detection framework with multimodal large language models (MLLMs). Our approach integrates Chain-of-Thought (CoT) reasoning to enhance multimodal interaction modeling and implicit hate interpretation. Additionally, we design a Mixture-of-Experts (MoE) network for efficient multimodal fusion and final decision-making. The framework is modular and extensible, allowing flexible integration of different MLLMs and encoders. Experimental results demonstrate that HVGuard outperforms all existing advanced detection tools, achieving an improvement of 6.88% to 13.13% in accuracy and 9.21% to 34.37% in M-F1 on two public datasets covering both English and Chinese.

2022

pdf bib
Multi-level Distillation of Semantic Knowledge for Pre-training Multilingual Language Model
Mingqi Li | Fei Ding | Dan Zhang | Long Cheng | Hongxin Hu | Feng Luo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained multilingual language models play an important role in cross-lingual natural language understanding tasks. However, existing methods did not focus on learning the semantic structure of representation, and thus could not optimize their performance. In this paper, we propose Multi-level Multilingual Knowledge Distillation (MMKD), a novel method for improving multilingual language models. Specifically, we employ a teacher-student framework to adopt rich semantic representation knowledge in English BERT. We propose token-, word-, sentence-, and structure-level alignment objectives to encourage multiple levels of consistency between source-target pairs and correlation similarity between teacher and student models. We conduct experiments on cross-lingual evaluation benchmarks including XNLI, PAWS-X, and XQuAD. Experimental results show that MMKD outperforms other baseline models of similar size on XNLI and XQuAD and obtains comparable performance on PAWS-X. Especially, MMKD obtains significant performance gains on low-resource languages.