Ian Kennedy


2021

pdf bib
Reconsidering Annotator Disagreement about Racist Language: Noise or Signal?
Savannah Larimore | Ian Kennedy | Breon Haskett | Alina Arseniev-Koehler
Proceedings of the Ninth International Workshop on Natural Language Processing for Social Media

An abundance of methodological work aims to detect hateful and racist language in text. However, these tools are hampered by problems like low annotator agreement and remain largely disconnected from theoretical work on race and racism in the social sciences. Using annotations of 5188 tweets from 291 annotators, we investigate how annotator perceptions of racism in tweets vary by annotator racial identity and two text features of the tweets: relevant keywords and latent topics identified through structural topic modeling. We provide a descriptive summary of our data and estimate a series of generalized linear models to determine if annotator racial identity and our 12 latent topics, alone or in combination, explain the way racial sentiment was annotated, net of relevant annotator characteristics and tweet features. Our results show that White and non-White annotators exhibit significant differences in ratings when reading tweets with high prevalence of particular, racially-charged topics. We conclude by suggesting how future methodological work can draw on our results and further incorporate social science theory into analyses.