Ibrahim Ahmad


2024

pdf bib
Are Generative Language Models Multicultural? A Study on Hausa Culture and Emotions using ChatGPT
Ibrahim Ahmad | Shiran Dudy | Resmi Ramachandranpillai | Kenneth Church
Proceedings of the 2nd Workshop on Cross-Cultural Considerations in NLP

Large Language Models (LLMs), such as ChatGPT, are widely used to generate content for various purposes and audiences. However, these models may not reflect the cultural and emotional diversity of their users, especially for low-resource languages. In this paper, we investigate how ChatGPT represents Hausa’s culture and emotions. We compare responses generated by ChatGPT with those provided by native Hausa speakers on 37 culturally relevant questions. We conducted experiments using emotion analysis. We also used two similarity metrics to measure the alignment between human and ChatGPT responses. We also collect human participants ratings and feedback on ChatGPT responses. Our results show that ChatGPT has some level of similarity to human responses, but also exhibits some gaps and biases in its knowledge and awareness of Hausa culture and emotions. We discuss the implications and limitations of our methodology and analysis and suggest ways to improve the performance and evaluation of LLMs for low-resource languages.

pdf bib
SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 13 Languages
Nedjma Ousidhoum | Shamsuddeen Muhammad | Mohamed Abdalla | Idris Abdulmumin | Ibrahim Ahmad | Sanchit Ahuja | Alham Aji | Vladimir Araujo | Abinew Ayele | Pavan Baswani | Meriem Beloucif | Chris Biemann | Sofia Bourhim | Christine Kock | Genet Dekebo | Oumaima Hourrane | Gopichand Kanumolu | Lokesh Madasu | Samuel Rutunda | Manish Shrivastava | Thamar Solorio | Nirmal Surange | Hailegnaw Tilaye | Krishnapriya Vishnubhotla | Genta Winata | Seid Yimam | Saif Mohammad
Findings of the Association for Computational Linguistics: ACL 2024

Exploring and quantifying semantic relatedness is central to representing language and holds significant implications across various NLP tasks. While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present SemRel, a new semantic relatedness dataset collection annotated by native speakers across 13 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia – regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, challenges when building the datasets, baseline experiments, and their impact and utility in NLP.