Single document news summarization has seen substantial progress on faithfulness in recent years, driven by research on the evaluation of factual consistency, or hallucinations. We ask whether these advances carry over to other text summarization domains. We propose a new evaluation benchmark on topic-focused dialogue summarization, generated by LLMs of varying sizes. We provide binary sentence- level human annotations of the factual consistency of these summaries along with detailed explanations of factually inconsistent sentences. Our analysis shows that existing LLMs hallucinate significant amounts of factual errors in the dialogue domain, regardless of the model’s size. On the other hand, when LLMs, including GPT-4, serve as binary factual evaluators, they perform poorly and can be outperformed by prevailing state-of-the-art specialized factuality evaluation metrics. Finally, we conducted an analysis of hallucination types with a curated error taxonomy. We find that there are diverse errors and error distributions in model-generated summaries and that non-LLM based metrics can capture all error types better than LLM-based evaluators.
Development of multimodal interactive systems is hindered by the lack of rich, multimodal (text, images) conversational data, which is needed in large quantities for LLMs. Previous approaches augment textual dialogues with retrieved images, posing privacy, diversity, and quality constraints. In this work, we introduce Multimodal Augmented Generative Images Dialogues (MAGID), a framework to augment text-only dialogues with diverse and high-quality images . Subsequently, a diffusion model is applied to craft corresponding images, ensuring alignment with the identified text. Finally, MAGID incorporates an innovative feedback loop between an image description generation module (textual LLM) and image quality modules (addressing aesthetics, image-text matching, and safety), that work in tandem to generate high-quality and multi-modal dialogues. We compare MAGID to other SOTA baselines on three dialogue datasets, using automated and human evaluation. Our results show that MAGID is comparable to or better than baselines, with significant improvements in human evaluation, especially against retrieval baselines where the image database is small.
Semi-supervised dialogue summarization (SSDS) leverages model-generated summaries to reduce reliance on human-labeled data and improve the performance of summarization models. While addressing label noise, previous works on semi-supervised learning primarily focus on natural language understanding tasks, assuming each sample has a unique label. However, these methods are not directly applicable to SSDS, as it is a generative task, and each dialogue can be summarized in different ways. In this work, we propose a novel scoring approach, SiCF, which encapsulates three primary dimensions of summarization model quality: Semantic invariance (indicative of model confidence), Coverage (factual recall), and Faithfulness (factual precision). Using the SiCF score, we select unlabeled dialogues with high-quality generated summaries to train summarization models. Comprehensive experiments on three public datasets demonstrate the effectiveness of SiCF scores in uncertainty estimation and semi-supervised learning for dialogue summarization tasks. Our code is available at https://github.com/amazon-science/summarization-sicf-score.
Large Language Models (LLMs) are powerful models for generation tasks, but they may not generate good quality outputs in their first attempt. Apart from model fine-tuning, existing approaches to improve prediction accuracy and quality typically involve LLM self-improvement / self-reflection that incorporate feedback from models themselves. Despite their effectiveness, these methods are hindered by their high computational cost and lack of scalability. In this work, we propose CERET, a method for refining text generations by considering semantic stability, entailment and inter-sample uncertainty measures. Experimental results show that CERET outperforms Self-consistency and Self-rerank baselines consistently under various task setups, by 1.6% in Rouge-1 for abstractive summarization and 3.5% in hit rate for question answering. Compared to LLM Self-rerank method, our approach only requires 9.4% of its latency and is more cost-effective.
Conversational systems often rely on embedding models for intent classification and intent clustering tasks. The advent of Large Language Models (LLMs), which enable instructional embeddings allowing one to adjust semantics over the embedding space using prompts, are being viewed as a panacea for these downstream conversational tasks. However, traditional evaluation benchmarks rely solely on task metrics that don’t particularly measure gaps related to semantic understanding. Thus, we propose an intent semantic toolkit that gives a more holistic view of intent embedding models by considering three tasks– (1) intent classification, (2) intent clustering, and (3) a novel triplet task. The triplet task gauges the model’s understanding of two semantic concepts paramount in real-world conversational systems– negation and implicature. We observe that current embedding models fare poorly in semantic understanding of these concepts. To address this, we propose a pre-training approach to improve the embedding model by leveraging augmentation with data generated by an auto-regressive model and a contrastive loss term. Our approach improves the semantic understanding of the intent embedding model on the aforementioned linguistic dimensions while slightly effecting their performance on downstream task metrics.
Automated evaluation is crucial for streamlining text summarization benchmarking and model development, given the costly and time-consuming nature of human evaluation. Traditional methods like ROUGE do not correlate well with human judgment, while recently proposed LLM-based metrics provide only summary-level assessment using Likert-scale scores. This limits deeper model analysis, e.g., we can only assign one hallucination score at the summary level, while at the sentence level, we can count sentences containing hallucinations. To remedy those limitations, we propose FineSurE, a fine-grained evaluator specifically tailored for the summarization task using large language models (LLMs). It also employs completeness and conciseness criteria, in addition to faithfulness, enabling multi-dimensional assessment. We compare various open-source and proprietary LLMs as backbones for FineSurE. In addition, we conduct extensive benchmarking of FineSurE against SOTA methods including NLI-, QA-, and LLM-based methods, showing improved performance especially on the completeness and conciseness dimensions. The code is available at https://github.com/DISL-Lab/FineSurE.
In this paper, we propose a novel approach named DisCal to enhance the level of abstractiveness (measured by n-gram overlap) without sacrificing the informativeness (measured by ROUGE) of generated summaries. DisCal exposes diverse pseudo summaries with two supervision to the student model. Firstly, the best pseudo summary is identified in terms of abstractiveness and informativeness and used for sequence-level distillation. Secondly, their ranks are used to ensure the student model to assign higher prediction scores to summaries with higher ranks. Our experiments show that DisCal outperforms prior methods in abstractive summarization distillation, producing highly abstractive and informative summaries.
Goal-oriented dialogue systems are now being widely adopted in industry where it is of key importance to maintain a rapid prototyping cycle for new products and domains. Data-driven dialogue system development has to be adapted to meet this requirement — therefore, reducing the amount of data and annotations necessary for training such systems is a central research problem. In this paper, we present the Dialogue Knowledge Transfer Network (DiKTNet), a state-of-the-art approach to goal-oriented dialogue generation which only uses a few example dialogues (i.e. few-shot learning), none of which has to be annotated. We achieve this by performing a 2-stage training. Firstly, we perform unsupervised dialogue representation pre-training on a large source of goal-oriented dialogues in multiple domains, the MetaLWOz corpus. Secondly, at the transfer stage, we train DiKTNet using this representation together with 2 other textual knowledge sources with different levels of generality: ELMo encoder and the main dataset’s source domains. Our main dataset is the Stanford Multi-Domain dialogue corpus. We evaluate our model on it in terms of BLEU and Entity F1 scores, and show that our approach significantly and consistently improves upon a series of baseline models as well as over the previous state-of-the-art dialogue generation model, ZSDG. The improvement upon the latter — up to 10% in Entity F1 and the average of 3% in BLEU score — is achieved using only 10% equivalent of ZSDG’s in-domain training data.
Learning with minimal data is one of the key challenges in the development of practical, production-ready goal-oriented dialogue systems. In a real-world enterprise setting where dialogue systems are developed rapidly and are expected to work robustly for an ever-growing variety of domains, products, and scenarios, efficient learning from a limited number of examples becomes indispensable. In this paper, we introduce a technique to achieve state-of-the-art dialogue generation performance in a few-shot setup, without using any annotated data. We do this by leveraging background knowledge from a larger, more highly represented dialogue source — namely, the MetaLWOz dataset. We evaluate our model on the Stanford Multi-Domain Dialogue Dataset, consisting of human-human goal-oriented dialogues in in-car navigation, appointment scheduling, and weather information domains. We show that our few-shot approach achieves state-of-the art results on that dataset by consistently outperforming the previous best model in terms of BLEU and Entity F1 scores, while being more data-efficient than it by not requiring any data annotation.
The overall objective of ‘social’ dialogue systems is to support engaging, entertaining, and lengthy conversations on a wide variety of topics, including social chit-chat. Apart from raw dialogue data, user-provided ratings are the most common signal used to train such systems to produce engaging responses. In this paper we show that social dialogue systems can be trained effectively from raw unannotated data. Using a dataset of real conversations collected in the 2017 Alexa Prize challenge, we developed a neural ranker for selecting ‘good’ system responses to user utterances, i.e. responses which are likely to lead to long and engaging conversations. We show that (1) our neural ranker consistently outperforms several strong baselines when trained to optimise for user ratings; (2) when trained on larger amounts of data and only using conversation length as the objective, the ranker performs better than the one trained using ratings – ultimately reaching a Precision@1 of 0.87. This advance will make data collection for social conversational agents simpler and less expensive in the future.
We investigate an end-to-end method for automatically inducing task-based dialogue systems from small amounts of unannotated dialogue data. It combines an incremental semantic grammar - Dynamic Syntax and Type Theory with Records (DS-TTR) - with Reinforcement Learning (RL), where language generation and dialogue management are a joint decision problem. The systems thus produced are incremental: dialogues are processed word-by-word, shown previously to be essential in supporting natural, spontaneous dialogue. We hypothesised that the rich linguistic knowledge within the grammar should enable a combinatorially large number of dialogue variations to be processed, even when trained on very few dialogues. Our experiments show that our model can process 74% of the Facebook AI bAbI dataset even when trained on only 0.13% of the data (5 dialogues). It can in addition process 65% of bAbI+, a corpus we created by systematically adding incremental dialogue phenomena such as restarts and self-corrections to bAbI. We compare our model with a state-of-the-art retrieval model, MEMN2N. We find that, in terms of semantic accuracy, the MEMN2N model shows very poor robustness to the bAbI+ transformations even when trained on the full bAbI dataset.