Ilia Kulikov


pdf bib
Simple and Effective Unsupervised Speech Translation
Changhan Wang | Hirofumi Inaguma | Peng-Jen Chen | Ilia Kulikov | Yun Tang | Wei-Ning Hsu | Michael Auli | Juan Pino
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The amount of labeled data to train models for speech tasks is limited for most languages, however, the data scarcity is exacerbated for speech translation which requires labeled data covering two different languages. To address this issue, we study a simple and effective approach to build speech translation systems without labeled data by leveraging recent advances in unsupervised speech recognition, machine translation and speech synthesis, either in a pipeline approach, or to generate pseudo-labels for training end-to-end speech translation models. Furthermore, we present an unsupervised domain adaptation technique for pre-trained speech models which improves the performance of downstream unsupervised speech recognition, especially for low-resource settings. Experiments show that unsupervised speech-to-text translation outperforms the previous unsupervised state of the art by 3.2 BLEU on the Libri-Trans benchmark, on CoVoST 2, our best systems outperform the best supervised end-to-end models (without pre-training) from only two years ago by an average of 5.0 BLEU over five X-En directions. We also report competitive results on MuST-C and CVSS benchmarks.

pdf bib
UnitY: Two-pass Direct Speech-to-speech Translation with Discrete Units
Hirofumi Inaguma | Sravya Popuri | Ilia Kulikov | Peng-Jen Chen | Changhan Wang | Yu-An Chung | Yun Tang | Ann Lee | Shinji Watanabe | Juan Pino
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Direct speech-to-speech translation (S2ST), in which all components can be optimized jointly, is advantageous over cascaded approaches to achieve fast inference with a simplified pipeline. We present a novel two-pass direct S2ST architecture, UnitY, which first generates textual representations and predicts discrete acoustic units subsequently. We enhance the model performance by subword prediction in the first-pass decoder, advanced two-pass decoder architecture design and search strategy, and better training regularization. To leverage large amounts of unlabeled text data, we pre-train the first-pass text decoder based on the self-supervised denoising auto-encoding task. Experimental evaluations on benchmark datasets at various data scales demonstrate that UnitY outperforms a single-pass speech-to-unit translation model by 2.5-4.2 ASR-BLEU with 2.83x decoding speed-up. We show that the proposed methods boost the performance even when predicting spectrogram in the second pass. However, predicting discrete units achieves 2.51x decoding speed-up compared to that case.


pdf bib
Characterizing and addressing the issue of oversmoothing in neural autoregressive sequence modeling
Ilia Kulikov | Maksim Eremeev | Kyunghyun Cho
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Neural autoregressive sequence models smear the probability among many possible sequences including degenerate ones, such as empty or repetitive sequences. In this work, we tackle one specific case where the model assigns a high probability to unreasonably short sequences. We define the oversmoothing rate to quantify this issue. After confirming the high degree of oversmoothing in neural machine translation, we propose to explicitly minimize the oversmoothing rate during training. We conduct a set of experiments to study the effect of the proposed regularization on both model distribution and decoding performance. We use a neural machine translation task as the testbed and consider three different datasets of varying size. Our experiments reveal three major findings. First, we can control the oversmoothing rate of the model by tuning the strength of the regularization. Second, by enhancing the oversmoothing loss contribution, the probability and the rank of eos token decrease heavily at positions where it is not supposed to be. Third, the proposed regularization impacts the outcome of beam search especially when a large beam is used. The degradation of translation quality (measured in BLEU) with a large beam significantly lessens with lower oversmoothing rate, but the degradation compared to smaller beam sizes remains to exist. From these observations, we conclude that the high degree of oversmoothing is the main reason behind the degenerate case of overly probable short sequences in a neural autoregressive model.

pdf bib
Uncertainty Determines the Adequacy of the Mode and the Tractability of Decoding in Sequence-to-Sequence Models
Felix Stahlberg | Ilia Kulikov | Shankar Kumar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In many natural language processing (NLP) tasks the same input (e.g. source sentence) can have multiple possible outputs (e.g. translations). To analyze how this ambiguity (also known as intrinsic uncertainty) shapes the distribution learned by neural sequence models we measure sentence-level uncertainty by computing the degree of overlap between references in multi-reference test sets from two different NLP tasks: machine translation (MT) and grammatical error correction (GEC). At both the sentence- and the task-level, intrinsic uncertainty has major implications for various aspects of search such as the inductive biases in beam search and the complexity of exact search. In particular, we show that well-known pathologies such as a high number of beam search errors, the inadequacy of the mode, and the drop in system performance with large beam sizes apply to tasks with high level of ambiguity such as MT but not to less uncertain tasks such as GEC. Furthermore, we propose a novel exact n-best search algorithm for neural sequence models, and show that intrinsic uncertainty affects model uncertainty as the model tends to overly spread out the probability mass for uncertain tasks and sentences.


pdf bib
Mode recovery in neural autoregressive sequence modeling
Ilia Kulikov | Sean Welleck | Kyunghyun Cho
Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)

Despite its wide use, recent studies have revealed unexpected and undesirable properties of neural autoregressive sequence models trained with maximum likelihood, such as an unreasonably high affinity to short sequences after training and to infinitely long sequences at decoding time. We propose to study these phenomena by investigating how the modes, or local maxima, of a distribution are maintained throughout the full learning chain of the ground-truth, empirical, learned and decoding-induced distributions, via the newly proposed mode recovery cost. We design a tractable testbed where we build three types of ground-truth distributions: (1) an LSTM based structured distribution, (2) an unstructured distribution where probability of a sequence does not depend on its content, and (3) a product of these two which we call a semi-structured distribution. Our study reveals both expected and unexpected findings. First, starting with data collection, mode recovery cost strongly relies on the ground-truth distribution and is most costly with the semi-structured distribution. Second, after learning, mode recovery cost from the ground-truth distribution may increase or decrease compared to data collection, with the largest cost degradation occurring with the semi-structured ground-truth distribution. Finally, the ability of the decoding-induced distribution to recover modes from the learned distribution is highly impacted by the choices made earlier in the learning chain. We conclude that future research must consider the entire learning chain in order to fully understand the potentials and perils and to further improve neural autoregressive sequence models.


pdf bib
Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training
Margaret Li | Stephen Roller | Ilia Kulikov | Sean Welleck | Y-Lan Boureau | Kyunghyun Cho | Jason Weston
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generative dialogue models currently suffer from a number of problems which standard maximum likelihood training does not address. They tend to produce generations that (i) rely too much on copying from the context, (ii) contain repetitions within utterances, (iii) overuse frequent words, and (iv) at a deeper level, contain logical flaws. In this work we show how all of these problems can be addressed by extending the recently introduced unlikelihood loss (Welleck et al., 2019) to these cases. We show that appropriate loss functions which regularize generated outputs to match human distributions are effective for the first three issues. For the last important general issue, we show applying unlikelihood to collected data of what a model should not do is effective for improving logical consistency, potentially paving the way to generative models with greater reasoning ability. We demonstrate the efficacy of our approach across several dialogue tasks.

pdf bib
Consistency of a Recurrent Language Model With Respect to Incomplete Decoding
Sean Welleck | Ilia Kulikov | Jaedeok Kim | Richard Yuanzhe Pang | Kyunghyun Cho
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite strong performance on a variety of tasks, neural sequence models trained with maximum likelihood have been shown to exhibit issues such as length bias and degenerate repetition. We study the related issue of receiving infinite-length sequences from a recurrent language model when using common decoding algorithms. To analyze this issue, we first define inconsistency of a decoding algorithm, meaning that the algorithm can yield an infinite-length sequence that has zero probability under the model. We prove that commonly used incomplete decoding algorithms – greedy search, beam search, top-k sampling, and nucleus sampling – are inconsistent, despite the fact that recurrent language models are trained to produce sequences of finite length. Based on these insights, we propose two remedies which address inconsistency: consistent variants of top-k and nucleus sampling, and a self-terminating recurrent language model. Empirical results show that inconsistency occurs in practice, and that the proposed methods prevent inconsistency.


pdf bib
Importance of Search and Evaluation Strategies in Neural Dialogue Modeling
Ilia Kulikov | Alexander Miller | Kyunghyun Cho | Jason Weston
Proceedings of the 12th International Conference on Natural Language Generation

We investigate the impact of search strategies in neural dialogue modeling. We first compare two standard search algorithms, greedy and beam search, as well as our newly proposed iterative beam search which produces a more diverse set of candidate responses. We evaluate these strategies in realistic full conversations with humans and propose a model-based Bayesian calibration to address annotator bias. These conversations are analyzed using two automatic metrics: log-probabilities assigned by the model and utterance diversity. Our experiments reveal that better search algorithms lead to higher rated conversations. However, finding the optimal selection mechanism to choose from a more diverse set of candidates is still an open question.