Ilya Shnayderman


2023

pdf bib
Zero-shot Topical Text Classification with LLMs - an Experimental Study
Shai Gretz | Alon Halfon | Ilya Shnayderman | Orith Toledo-Ronen | Artem Spector | Lena Dankin | Yannis Katsis | Ofir Arviv | Yoav Katz | Noam Slonim | Liat Ein-Dor
Findings of the Association for Computational Linguistics: EMNLP 2023

Topical Text Classification (TTC) is an ancient, yet timely research area in natural language processing, with many practical applications. The recent dramatic advancements in large LMs raise the question of how well these models can perform in this task in a zero-shot scenario. Here, we share a first comprehensive study, comparing the zero-shot performance of a variety of LMs over TTC23, a large benchmark collection of 23 publicly available TTC datasets, covering a wide range of domains and styles. In addition, we leverage this new TTC benchmark to create LMs that are specialized in TTC, by fine-tuning these LMs over a subset of the datasets and evaluating their performance over the remaining, held-out datasets. We show that the TTC-specialized LMs obtain the top performance on our benchmark, by a significant margin. Our code and model are made available for the community. We hope that the results presented in this work will serve as a useful guide for practitioners interested in topical text classification.

2022

pdf bib
Quality Controlled Paraphrase Generation
Elron Bandel | Ranit Aharonov | Michal Shmueli-Scheuer | Ilya Shnayderman | Noam Slonim | Liat Ein-Dor
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Paraphrase generation has been widely used in various downstream tasks. Most tasks benefit mainly from high quality paraphrases, namely those that are semantically similar to, yet linguistically diverse from, the original sentence. Generating high-quality paraphrases is challenging as it becomes increasingly hard to preserve meaning as linguistic diversity increases. Recent works achieve nice results by controlling specific aspects of the paraphrase, such as its syntactic tree. However, they do not allow to directly control the quality of the generated paraphrase, and suffer from low flexibility and scalability. Here we propose QCPG, a quality-guided controlled paraphrase generation model, that allows directly controlling the quality dimensions. Furthermore, we suggest a method that given a sentence, identifies points in the quality control space that are expected to yield optimal generated paraphrases. We show that our method is able to generate paraphrases which maintain the original meaning while achieving higher diversity than the uncontrolled baseline. The models, the code, and the data can be found in https://github.com/IBM/quality-controlled-paraphrase-generation.

2018

pdf bib
Learning Thematic Similarity Metric from Article Sections Using Triplet Networks
Liat Ein Dor | Yosi Mass | Alon Halfon | Elad Venezian | Ilya Shnayderman | Ranit Aharonov | Noam Slonim
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In this paper we suggest to leverage the partition of articles into sections, in order to learn thematic similarity metric between sentences. We assume that a sentence is thematically closer to sentences within its section than to sentences from other sections. Based on this assumption, we use Wikipedia articles to automatically create a large dataset of weakly labeled sentence triplets, composed of a pivot sentence, one sentence from the same section and one from another section. We train a triplet network to embed sentences from the same section closer. To test the performance of the learned embeddings, we create and release a sentence clustering benchmark. We show that the triplet network learns useful thematic metrics, that significantly outperform state-of-the-art semantic similarity methods and multipurpose embeddings on the task of thematic clustering of sentences. We also show that the learned embeddings perform well on the task of sentence semantic similarity prediction.

pdf bib
Learning Concept Abstractness Using Weak Supervision
Ella Rabinovich | Benjamin Sznajder | Artem Spector | Ilya Shnayderman | Ranit Aharonov | David Konopnicki | Noam Slonim
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce a weakly supervised approach for inferring the property of abstractness of words and expressions in the complete absence of labeled data. Exploiting only minimal linguistic clues and the contextual usage of a concept as manifested in textual data, we train sufficiently powerful classifiers, obtaining high correlation with human labels. The results imply the applicability of this approach to additional properties of concepts, additional languages, and resource-scarce scenarios.