Indrajit Bhattacharya


2021

pdf bib
Joint Learning of Representations for Web-tables, Entities and Types using Graph Convolutional Network
Aniket Pramanick | Indrajit Bhattacharya
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Existing approaches for table annotation with entities and types either capture the structure of table using graphical models, or learn embeddings of table entries without accounting for the complete syntactic structure. We propose TabGCN, that uses Graph Convolutional Networks to capture the complete structure of tables, knowledge graph and the training annotations, and jointly learns embeddings for table elements as well as the entities and types. To account for knowledge incompleteness, TabGCN’s embeddings can be used to discover new entities and types. Using experiments on 5 benchmark datasets, we show that TabGCN significantly outperforms multiple state-of-the-art baselines for table annotation, while showing promising performance on downstream table-related applications.

pdf bib
Complex Question Answering on knowledge graphs using machine translation and multi-task learning
Saurabh Srivastava | Mayur Patidar | Sudip Chowdhury | Puneet Agarwal | Indrajit Bhattacharya | Gautam Shroff
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Question answering (QA) over a knowledge graph (KG) is a task of answering a natural language (NL) query using the information stored in KG. In a real-world industrial setting, this involves addressing multiple challenges including entity linking, multi-hop reasoning over KG, etc. Traditional approaches handle these challenges in a modularized sequential manner where errors in one module lead to the accumulation of errors in downstream modules. Often these challenges are inter-related and the solutions to them can reinforce each other when handled simultaneously in an end-to-end learning setup. To this end, we propose a multi-task BERT based Neural Machine Translation (NMT) model to address these challenges. Through experimental analysis, we demonstrate the efficacy of our proposed approach on one publicly available and one proprietary dataset.

pdf bib
Generating An Optimal Interview Question Plan Using A Knowledge Graph And Integer Linear Programming
Soham Datta | Prabir Mallick | Sangameshwar Patil | Indrajit Bhattacharya | Girish Palshikar
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Given the diversity of the candidates and complexity of job requirements, and since interviewing is an inherently subjective process, it is an important task to ensure consistent, uniform, efficient and objective interviews that result in high quality recruitment. We propose an interview assistant system to automatically, and in an objective manner, select an optimal set of technical questions (from question banks) personalized for a candidate. This set can help a human interviewer to plan for an upcoming interview of that candidate. We formalize the problem of selecting a set of questions as an integer linear programming problem and use standard solvers to get a solution. We use knowledge graph as background knowledge in this formulation, and derive our objective functions and constraints from it. We use candidate’s resume to personalize the selection of questions. We propose an intrinsic evaluation to compare a set of suggested questions with actually asked questions. We also use expert interviewers to comparatively evaluate our approach with a set of reasonable baselines.

2020

pdf bib
Discovering Knowledge Graph Schema from Short Natural Language Text via Dialog
Subhasis Ghosh | Arpita Kundu | Aniket Pramanick | Indrajit Bhattacharya
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

We study the problem of schema discovery for knowledge graphs. We propose a solution where an agent engages in multi-turn dialog with an expert for this purpose. Each mini-dialog focuses on a short natural language statement, and looks to elicit the expert’s desired schema-based interpretation of that statement, taking into account possible augmentations to the schema. The overall schema evolves by performing dialog over a collection of such statements. We take into account the probability that the expert does not respond to a query, and model this probability as a function of the complexity of the query. For such mini-dialogs with response uncertainty, we propose a dialog strategy that looks to elicit the schema over as short a dialog as possible. By combining the notion of uncertainty sampling from active learning with generalized binary search, the strategy asks the query with the highest expected reduction of entropy. We show that this significantly reduces dialog complexity while engaging the expert in meaningful dialog.

2017

pdf bib
Stance Classification of Context-Dependent Claims
Roy Bar-Haim | Indrajit Bhattacharya | Francesco Dinuzzo | Amrita Saha | Noam Slonim
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Recent work has addressed the problem of detecting relevant claims for a given controversial topic. We introduce the complementary task of Claim Stance Classification, along with the first benchmark dataset for this task. We decompose this problem into: (a) open-domain target identification for topic and claim (b) sentiment classification for each target, and (c) open-domain contrast detection between the topic and the claim targets. Manual annotation of the dataset confirms the applicability and validity of our model. We describe an implementation of our model, focusing on a novel algorithm for contrast detection. Our approach achieves promising results, and is shown to outperform several baselines, which represent the common practice of applying a single, monolithic classifier for stance classification.

2004

pdf bib
Unsupervised Sense Disambiguation Using Bilingual Probabilistic Models
Indrajit Bhattacharya | Lise Getoor | Yoshua Bengio
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04)

pdf bib
The University of Maryland Senseval-3 system descriptions
Clara Cabezas | Indrajit Bhattacharya | Philip Resnik
Proceedings of SENSEVAL-3, the Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text