2024
pdf
bib
abs
Beyond Accuracy Optimization: Computer Vision Losses for Large Language Model Fine-Tuning
Daniele Rege Cambrin
|
Giuseppe Gallipoli
|
Irene Benedetto
|
Luca Cagliero
|
Paolo Garza
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) have demonstrated impressive performance across various tasks. However, current training approaches combine standard cross-entropy loss with extensive data, human feedback, or ad hoc methods to enhance performance. These solutions are often not scalable or feasible due to their associated costs, complexity, or resource requirements. This study investigates the use of established semantic segmentation loss functions in natural language generation to create a versatile, practical, and scalable solution for fine-tuning different architectures. We evaluate their effectiveness in solving Math Word Problems and question answering across different models of varying sizes. For the analyzed tasks, we found that the traditional Cross-Entropy loss represents a sub-optimal choice, while models trained to minimize alternative (task-dependent) losses, such as Focal or Lovász, achieve a mean improvement of +36% on exact match without requiring additional data or human feedback. These findings suggest a promising pathway for more efficient and accessible training processes.
pdf
bib
abs
MAINDZ at SemEval-2024 Task 5: CLUEDO - Choosing Legal oUtcome by Explaining Decision through Oversight
Irene Benedetto
|
Alkis Koudounas
|
Lorenzo Vaiani
|
Eliana Pastor
|
Luca Cagliero
|
Francesco Tarasconi
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Large language models (LLMs) have recently obtained strong performance on complex reasoning tasks. However, their capabilities in specialized domains like law remain relatively unexplored. We present CLUEDO, a system to tackle a novel legal reasoning task that involves determining if a provided answer correctly addresses a legal question derived from U.S. civil procedure cases. CLUEDO utilizes multiple collaborator models that are trained using multiple-choice prompting to choose the right label and generate explanations. These collaborators are overseen by a final “detective” model that identifies the most accurate answer in a zero-shot manner. Our approach achieves an F1 macro score of 0.74 on the development set and 0.76 on the test set, outperforming individual models. Unlike the powerful GPT-4, CLUEDO provides more stable predictions thanks to the ensemble approach. Our results showcase the promise of tailored frameworks to enhance legal reasoning capabilities in LLMs.
2023
pdf
bib
abs
PoliToHFI at SemEval-2023 Task 6: Leveraging Entity-Aware and Hierarchical Transformers For Legal Entity Recognition and Court Judgment Prediction
Irene Benedetto
|
Alkis Koudounas
|
Lorenzo Vaiani
|
Eliana Pastor
|
Elena Baralis
|
Luca Cagliero
|
Francesco Tarasconi
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
The use of Natural Language Processing techniques in the legal domain has become established for supporting attorneys and domain experts in content retrieval and decision-making. However, understanding the legal text poses relevant challenges in the recognition of domain-specific entities and the adaptation and explanation of predictive models. This paper addresses the Legal Entity Name Recognition (L-NER) and Court judgment Prediction (CPJ) and Explanation (CJPE) tasks. The L-NER solution explores the use of various transformer-based models, including an entity-aware method attending domain-specific entities. The CJPE proposed method relies on hierarchical BERT-based classifiers combined with local input attribution explainers. We propose a broad comparison of eXplainable AI methodologies along with a novel approach based on NER. For the L-NER task, the experimental results remark on the importance of domain-specific pre-training. For CJP our lightweight solution shows performance in line with existing approaches, and our NER-boosted explanations show promising CJPE results in terms of the conciseness of the prediction explanations.
pdf
bib
abs
Transformer-based Prediction of Emotional Reactions to Online Social Network Posts
Irene Benedetto
|
Moreno La Quatra
|
Luca Cagliero
|
Luca Vassio
|
Martino Trevisan
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
Emotional reactions to Online Social Network posts have recently gained importance in the study of the online ecosystem. Prior to post publication, the number of received reactions can be predicted based on either the textual content of the post or the related metadata. However, existing approaches suffer from both the lack of semantic-aware language understanding models and the limited explainability of the prediction models. To overcome these issues, we present a new transformer-based method to predict the number of emotional reactions of different types to social posts. It leverages the attention mechanism to capture arbitrary semantic textual relations neglected by prior works. Furthermore, it also provides end-users with textual explanations of the predictions. The results achieved on a large collection of Facebook posts confirm the applicability of the presented methodology.