Explainable artificial intelligence (XAI) is a rapidly evolving field that seeks to create AI systems that can provide human-understandable explanations for their decision-making processes. However, these explanations rely on model and data-specific information only. To support better human decision-making, integrating domain knowledge into AI systems is expected to enhance understanding and transparency. In this paper, we present an approach for combining XAI explanations with domain knowledge within a dialogue system. We concentrate on techniques derived from the field of computational argumentation to incorporate domain knowledge and corresponding explanations into human-machine dialogue. We implement the approach in a prototype system for an initial user evaluation, where users interacted with the dialogue system to receive predictions from an underlying AI model. The participants were able to explore different types of explanations and domain knowledge. Our results indicate that users tend to more effectively evaluate model performance when domain knowledge is integrated. On the other hand, we found that domain knowledge was not frequently requested by the user during dialogue interactions.
The growing need for transparency in AI systems has led to the increased popularity of explainable AI (XAI), with dialogue systems emerging as a promising approach to provide dynamic and interactive explanations. To overcome the limitations of non-conversational XAI methods, we proposed and implemented a generic dialogue architecture that integrates domain-specific knowledge, enhancing user comprehension and interaction. By incorporating computational argumentation and argumentative tree structures into our prototype, we found a positive impact on the dialogue’s effectiveness. In future research, we plan to improve Natural Language Understanding (NLU) to reduce error rates and better interpret user queries, and to advance Natural Language Generation (NLG) techniques for generating more fluid and contextually appropriate responses using large language models. Additionally, we will refine argument annotation to enable better selection and presentation of information, ensuring the system provides the most relevant and coherent explanations based on user needs. Over the next 5 to 10 years, we anticipate significant advancements in dialogue systems’ flexibility, personalization, and cultural adaptability, driven by large language models and open domain dialogues. These developments will enhance global communication, user satisfaction, and the effectiveness of virtual assistants across various applications while addressing ethical and social implications.
Speech interfaces for argumentative dialogue systems (ADS) are rather scarce. The complex task they pursue hinders the application of common natural language understanding (NLU) approaches in this domain. To address this issue we include an adaption of a recently introduced NLU framework tailored to argumentative tasks into a complete ADS. We evaluate the likeability and motivation of users to interact with the new system in a user study. Therefore, we compare it to a solid baseline utilizing a drop-down menu. The results indicate that the integration of a flexible NLU framework enables a far more natural and satisfying interaction with human users in real-time. Even though the drop-down menu convinces regarding its robustness, the willingness to use the new system is significantly higher. Hence, the featured NLU framework provides a sound basis to build an intuitive interface which can be extended to adapt its behavior to the individual user.
Despite the remarkable progress in the field of computational argumentation, dialogue systems concerned with argumentative tasks often rely on structured knowledge about arguments and their relations. Since the manual acquisition of these argument structures is highly time-consuming, the corresponding systems are inflexible regarding the topics they can discuss. To address this issue, we propose a combination of argumentative dialogue systems with argument search technology that enables a system to discuss any topic on which the search engine is able to find suitable arguments. Our approach utilizes supervised learning-based relation classification to map the retrieved arguments into a general tree structure for use in dialogue systems. We evaluate the approach with a state of the art search engine and a recently introduced dialogue model in an extensive user study with respect to the dialogue coherence. The results vary between the investigated topics (and hence depend on the quality of the underlying data) but are in some instances surprisingly close to the results achieved with a manually annotated argument structure.
We present a neural network approach to estimate the communication style of spoken interaction, namely the stylistic variations elaborateness and directness, and investigate which type of input features to the estimator are necessary to achive good performance. First, we describe our annotated corpus of recordings in the health care domain and analyse the corpus statistics in terms of agreement, correlation and reliability of the ratings. We use this corpus to estimate the elaborateness and the directness of each utterance. We test different feature sets consisting of dialogue act features, grammatical features and linguistic features as input for our classifier and perform classification in two and three classes. Our classifiers use only features that can be automatically derived during an ongoing interaction in any spoken dialogue system without any prior annotation. Our results show that the elaborateness can be classified by only using the dialogue act and the amount of words contained in the corresponding utterance. The directness is a more difficult classification task and additional linguistic features in form of word embeddings improve the classification results. Afterwards, we run a comparison with a support vector machine and a recurrent neural network classifier.