Isabelle Lee


2024

pdf bib
Self-contradictory reasoning evaluation and detection
Ziyi Liu | Soumya Sanyal | Isabelle Lee | Yongkang Du | Rahul Gupta | Yang Liu | Jieyu Zhao
Findings of the Association for Computational Linguistics: EMNLP 2024

In a plethora of recent work, large language models (LLMs) demonstrated impressive reasoning ability, but many proposed downstream reasoning tasks only focus on performance-wise evaluation. Two fundamental questions persist: 1) how consistent is the reasoning, and 2) can models detect unreliable reasoning? In this paper, we investigate self-contradictory (Self-Contra) reasoning, where the model reasoning does not support answers. To answer 1), we define and assess the Self-Contra rate across three datasets and delve into finer-grained categories of Self-Contra reasoning. We find that LLMs often contradict themselves in reasoning tasks involving contextual information understanding or commonsense. The model may generate correct answers by taking shortcuts in reasoning or overlooking contextual evidence, leading to compromised reasoning. For 2), we task the state-of-the-art model GPT-4 with identifying Self-Contra reasoning and finer-grained fallacies. We find that finer-grained aided detection can improve GPT-4’s ability to detect Self-Contra. However, it is only able to detect Self-Contra with a 52.2% F1 score, much lower compared to 66.7% for humans. Our results indicate that current LLMs lack the robustness necessary for reliable reasoning and we emphasize the urgent need for establishing best practices in comprehensive reasoning evaluations beyond pure performance-based metrics.

pdf bib
On Retrieval Augmentation and the Limitations of Language Model Training
Ting-Rui Chiang | Xinyan Yu | Joshua Robinson | Ollie Liu | Isabelle Lee | Dani Yogatama
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Augmenting a language model (LM) with k-nearest neighbors (kNN) retrieval on its training data alone can decrease its perplexity, though the underlying reasons for this remain elusive. In this work, we rule out one previously posited possibility — the “softmax bottleneck.” We then create a new dataset to evaluate LM generalization ability in the setting where training data contains additional information that is not causally relevant. This task is challenging even for GPT-3.5 Turbo. We show that, for both GPT-2 and Mistral 7B, kNN retrieval augmentation consistently improves per formance in this setting. Finally, to make kNN retrieval more accessible, we propose using amulti-layer perceptron model that maps datastore keys to values as a drop-in replacement for traditional retrieval. This reduces storage costsby over 25x.