Isabelle Lorge
2024
STEntConv: Predicting Disagreement between Reddit Users with Stance Detection and a Signed Graph Convolutional Network
Isabelle Lorge
|
Li Zhang
|
Xiaowen Dong
|
Janet Pierrehumbert
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
The rise of social media platforms has led to an increase in polarised online discussions, especially on political and socio-cultural topics such as elections and climate change. We propose a simple and entirely novel unsupervised method to better predict whether the authors of two posts agree or disagree, leveraging user stances about named entities obtained from their posts. We present STEntConv, a model which builds a graph of users and named entities weighted by stance and trains a Signed Graph Convolutional Network (SGCN) to detect disagreement between comment and reply posts. We run experiments and ablation studies and show that including this information improves disagreement detection performance on a dataset of Reddit posts for a range of controversial subreddit topics, without the need for platform-specific features or user history
2023
Not Wacky vs. Definitely Wacky: A Study of Scalar Adverbs in Pretrained Language Models
Isabelle Lorge
|
Janet B. Pierrehumbert
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Vector-space models of word meaning all assume that words occurring in similar contexts have similar meanings. Words that are similar in their topical associations but differ in their logical force tend to emerge as semantically close – creating well-known challenges for NLP applications that involve logical reasoning. Pretrained language models such as BERT, RoBERTa, GPT-2, and GPT-3 hold the promise of performing better on logical tasks than classic static word embeddings. However, reports are mixed about their success. Here, we advance this discussion through a systematic study of scalar adverbs, an under-explored class of words with strong logical force. Using three different tasks involving both naturalistic social media data and constructed examples, we investigate the extent to which BERT, RoBERTa, GPT-2 and GPT-3 exhibit knowledge of these common words. We ask: 1) Do the models distinguish amongst the three semantic categories of MODALITY, FREQUENCY and DEGREE? 2) Do they have implicit representations of full scales from maximally negative to maximally positive? 3) How do word frequency and contextual factors impact model performance? We find that despite capturing some aspects of logical meaning, the models still have obvious shortfalls.