Isak Czeresnia Etinger
2019
Formality Style Transfer for Noisy, User-generated Conversations: Extracting Labeled, Parallel Data from Unlabeled Corpora
Isak Czeresnia Etinger
|
Alan W Black
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
Typical datasets used for style transfer in NLP contain aligned pairs of two opposite extremes of a style. As each existing dataset is sourced from a specific domain and context, most use cases will have a sizable mismatch from the vocabulary and sentence structures of any dataset available. This reduces the performance of the style transfer, and is particularly significant for noisy, user-generated text. To solve this problem, we show a technique to derive a dataset of aligned pairs (style-agnostic vs stylistic sentences) from an unlabeled corpus by using an auxiliary dataset, allowing for in-domain training. We test the technique with the Yahoo Formality Dataset and 6 novel datasets we produced, which consist of scripts from 5 popular TV-shows (Friends, Futurama, Seinfeld, Southpark, Stargate SG-1) and the Slate Star Codex online forum. We gather 1080 human evaluations, which show that our method produces a sizable change in formality while maintaining fluency and context; and that it considerably outperforms OpenNMT’s Seq2Seq model directly trained on the Yahoo Formality Dataset. Additionally, we publish the full pipeline code and our novel datasets.
Multimodal, Multilingual Grapheme-to-Phoneme Conversion for Low-Resource Languages
James Route
|
Steven Hillis
|
Isak Czeresnia Etinger
|
Han Zhang
|
Alan W Black
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)
Grapheme-to-phoneme conversion (g2p) is the task of predicting the pronunciation of words from their orthographic representation. His- torically, g2p systems were transition- or rule- based, making generalization beyond a mono- lingual (high resource) domain impractical. Recently, neural architectures have enabled multilingual systems to generalize widely; however, all systems to date have been trained only on spelling-pronunciation pairs. We hy- pothesize that the sequences of IPA characters used to represent pronunciation do not capture its full nuance, especially when cleaned to fa- cilitate machine learning. We leverage audio data as an auxiliary modality in a multi-task training process to learn a more optimal inter- mediate representation of source graphemes; this is the first multimodal model proposed for multilingual g2p. Our approach is highly ef- fective: on our in-domain test set, our mul- timodal model reduces phoneme error rate to 2.46%, a more than 65% decrease compared to our implementation of a unimodal spelling- pronunciation model—which itself achieves state-of-the-art results on the Wiktionary test set. The advantages of the multimodal model generalize to wholly unseen languages, reduc- ing phoneme error rate on our out-of-domain test set to 6.39% from the unimodal 8.21%, a more than 20% relative decrease. Further- more, our training and test sets are composed primarily of low-resource languages, demon- strating that our multimodal approach remains useful when training data are constrained.