Isak Czeresnia Etinger


pdf bib
Formality Style Transfer for Noisy, User-generated Conversations: Extracting Labeled, Parallel Data from Unlabeled Corpora
Isak Czeresnia Etinger | Alan W Black
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Typical datasets used for style transfer in NLP contain aligned pairs of two opposite extremes of a style. As each existing dataset is sourced from a specific domain and context, most use cases will have a sizable mismatch from the vocabulary and sentence structures of any dataset available. This reduces the performance of the style transfer, and is particularly significant for noisy, user-generated text. To solve this problem, we show a technique to derive a dataset of aligned pairs (style-agnostic vs stylistic sentences) from an unlabeled corpus by using an auxiliary dataset, allowing for in-domain training. We test the technique with the Yahoo Formality Dataset and 6 novel datasets we produced, which consist of scripts from 5 popular TV-shows (Friends, Futurama, Seinfeld, Southpark, Stargate SG-1) and the Slate Star Codex online forum. We gather 1080 human evaluations, which show that our method produces a sizable change in formality while maintaining fluency and context; and that it considerably outperforms OpenNMT’s Seq2Seq model directly trained on the Yahoo Formality Dataset. Additionally, we publish the full pipeline code and our novel datasets.

pdf bib
Multimodal, Multilingual Grapheme-to-Phoneme Conversion for Low-Resource Languages
James Route | Steven Hillis | Isak Czeresnia Etinger | Han Zhang | Alan W Black
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Grapheme-to-phoneme conversion (g2p) is the task of predicting the pronunciation of words from their orthographic representation. His- torically, g2p systems were transition- or rule- based, making generalization beyond a mono- lingual (high resource) domain impractical. Recently, neural architectures have enabled multilingual systems to generalize widely; however, all systems to date have been trained only on spelling-pronunciation pairs. We hy- pothesize that the sequences of IPA characters used to represent pronunciation do not capture its full nuance, especially when cleaned to fa- cilitate machine learning. We leverage audio data as an auxiliary modality in a multi-task training process to learn a more optimal inter- mediate representation of source graphemes; this is the first multimodal model proposed for multilingual g2p. Our approach is highly ef- fective: on our in-domain test set, our mul- timodal model reduces phoneme error rate to 2.46%, a more than 65% decrease compared to our implementation of a unimodal spelling- pronunciation model—which itself achieves state-of-the-art results on the Wiktionary test set. The advantages of the multimodal model generalize to wholly unseen languages, reduc- ing phoneme error rate on our out-of-domain test set to 6.39% from the unimodal 8.21%, a more than 20% relative decrease. Further- more, our training and test sets are composed primarily of low-resource languages, demon- strating that our multimodal approach remains useful when training data are constrained.