Iyanuoluwa Shode


pdf bib
MEDs for PETs: Multilingual Euphemism Disambiguation for Potentially Euphemistic Terms
Patrick Lee | Alain Chirino Trujillo | Diana Cuevas Plancarte | Olumide Ojo | Xinyi Liu | Iyanuoluwa Shode | Yuan Zhao | Anna Feldman | Jing Peng
Findings of the Association for Computational Linguistics: EACL 2024

Euphemisms are found across the world’s languages, making them a universal linguistic phenomenon. As such, euphemistic data may have useful properties for computational tasks across languages. In this study, we explore this premise by training a multilingual transformer model (XLM-RoBERTa) to disambiguate potentially euphemistic terms (PETs) in multilingual and cross-lingual settings. In line with current trends, we demonstrate that zero-shot learning across languages takes place. We also show cases where multilingual models perform better on the task compared to monolingual models by a statistically significant margin, indicating that multilingual data presents additional opportunities for models to learn about cross-lingual, computational properties of euphemisms. In a follow-up analysis, we focus on universal euphemistic “categories” such as death and bodily functions among others. We test to see whether cross-lingual data of the same domain is more important than within-language data of other domains to further understand the nature of the cross-lingual transfer.


pdf bib
MasakhaNEWS: News Topic Classification for African languages
David Ifeoluwa Adelani | Marek Masiak | Israel Abebe Azime | Jesujoba Alabi | Atnafu Lambebo Tonja | Christine Mwase | Odunayo Ogundepo | Bonaventure F. P. Dossou | Akintunde Oladipo | Doreen Nixdorf | Chris Chinenye Emezue | Sana Al-azzawi | Blessing Sibanda | Davis David | Lolwethu Ndolela | Jonathan Mukiibi | Tunde Ajayi | Tatiana Moteu | Brian Odhiambo | Abraham Owodunni | Nnaemeka Obiefuna | Muhidin Mohamed | Shamsuddeen Hassan Muhammad | Teshome Mulugeta Ababu | Saheed Abdullahi Salahudeen | Mesay Gemeda Yigezu | Tajuddeen Gwadabe | Idris Abdulmumin | Mahlet Taye | Oluwabusayo Awoyomi | Iyanuoluwa Shode | Tolulope Adelani | Habiba Abdulganiyu | Abdul-Hakeem Omotayo | Adetola Adeeko | Abeeb Afolabi | Anuoluwapo Aremu | Olanrewaju Samuel | Clemencia Siro | Wangari Kimotho | Onyekachi Ogbu | Chinedu Mbonu | Chiamaka Chukwuneke | Samuel Fanijo | Jessica Ojo | Oyinkansola Awosan | Tadesse Kebede | Toadoum Sari Sakayo | Pamela Nyatsine | Freedmore Sidume | Oreen Yousuf | Mardiyyah Oduwole | Kanda Tshinu | Ussen Kimanuka | Thina Diko | Siyanda Nxakama | Sinodos Nigusse | Abdulmejid Johar | Shafie Mohamed | Fuad Mire Hassan | Moges Ahmed Mehamed | Evrard Ngabire | Jules Jules | Ivan Ssenkungu | Pontus Stenetorp
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo | Tajuddeen Gwadabe | Clara Rivera | Jonathan Clark | Sebastian Ruder | David Adelani | Bonaventure Dossou | Abdou Diop | Claytone Sikasote | Gilles Hacheme | Happy Buzaaba | Ignatius Ezeani | Rooweither Mabuya | Salomey Osei | Chris Emezue | Albert Kahira | Shamsuddeen Muhammad | Akintunde Oladipo | Abraham Owodunni | Atnafu Tonja | Iyanuoluwa Shode | Akari Asai | Anuoluwapo Aremu | Ayodele Awokoya | Bernard Opoku | Chiamaka Chukwuneke | Christine Mwase | Clemencia Siro | Stephen Arthur | Tunde Ajayi | Verrah Otiende | Andre Rubungo | Boyd Sinkala | Daniel Ajisafe | Emeka Onwuegbuzia | Falalu Lawan | Ibrahim Ahmad | Jesujoba Alabi | Chinedu Mbonu | Mofetoluwa Adeyemi | Mofya Phiri | Orevaoghene Ahia | Ruqayya Iro | Sonia Adhiambo
Findings of the Association for Computational Linguistics: EMNLP 2023

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

pdf bib
FEED PETs: Further Experimentation and Expansion on the Disambiguation of Potentially Euphemistic Terms
Patrick Lee | Iyanuoluwa Shode | Alain Trujillo | Yuan Zhao | Olumide Ojo | Diana Plancarte | Anna Feldman | Jing Peng
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)

Transformers have been shown to work well for the task of English euphemism disambiguation, in which a potentially euphemistic term (PET) is classified as euphemistic or non-euphemistic in a particular context. In this study, we expand on the task in two ways. First, we annotate PETs for vagueness, a linguistic property associated with euphemisms, and find that transformers are generally better at classifying vague PETs, suggesting linguistic differences in the data that impact performance. Second, we present novel euphemism corpora in three different languages: Yoruba, Spanish, and Mandarin Chinese. We perform euphemism disambiguation experiments in each language using multilingual transformer models mBERT and XLM-RoBERTa, establishing preliminary results from which to launch future work.

pdf bib
Masakhane-Afrisenti at SemEval-2023 Task 12: Sentiment Analysis using Afro-centric Language Models and Adapters for Low-resource African Languages
Israel Abebe Azime | Sana Al-azzawi | Atnafu Lambebo Tonja | Iyanuoluwa Shode | Jesujoba Alabi | Ayodele Awokoya | Mardiyyah Oduwole | Tosin Adewumi | Samuel Fanijo | Awosan Oyinkansola
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Detecting harmful content on social media plat-forms is crucial in preventing the negative ef-fects these posts can have on social media users. This paper presents our methodology for tack-ling task 10 from SemEval23, which focuseson detecting and classifying online sexism insocial media posts. We constructed our solu-tion using an ensemble of transformer-basedmodels (that have been fine-tuned; BERTweet,RoBERTa, and DeBERTa). To alleviate the var-ious issues caused by the class imbalance inthe dataset provided and improve the general-ization of our model, our framework employsdata augmentation and semi-supervised learn-ing. Specifically, we use back-translation fordata augmentation in two scenarios: augment-ing the underrepresented class and augment-ing all classes. In this study, we analyze theimpact of these different strategies on the sys-tem’s overall performance and determine whichtechnique is the most effective. Extensive ex-periments demonstrate the efficacy of our ap-proach. For sub-task A, the system achievedan F1-score of 0.8613. The source code to re-produce the proposed solutions is available onGithub

pdf bib
NollySenti: Leveraging Transfer Learning and Machine Translation for Nigerian Movie Sentiment Classification
Iyanuoluwa Shode | David Ifeoluwa Adelani | JIng Peng | Anna Feldman
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labelled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross-domain adaptation. We create a new dataset, Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian Pidgin, and Yoruba). We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. By leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While machine translation to low-resource languages are often of low quality, our analysis shows that sentiment related words are often preserved.


pdf bib
AfroLM: A Self-Active Learning-based Multilingual Pretrained Language Model for 23 African Languages
Bonaventure F. P. Dossou | Atnafu Lambebo Tonja | Oreen Yousuf | Salomey Osei | Abigail Oppong | Iyanuoluwa Shode | Oluwabusayo Olufunke Awoyomi | Chris Emezue
Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

In recent years, multilingual pre-trained language models have gained prominence due to their remarkable performance on numerous downstream Natural Language Processing tasks (NLP). However, pre-training these large multilingual language models requires a lot of training data, which is not available for African Languages. Active learning is a semi-supervised learning algorithm, in which a model consistently and dynamically learns to identify the most beneficial samples to train itself on, in order to achieve better optimization and performance on downstream tasks. Furthermore, active learning effectively and practically addresses real-world data scarcity. Despite all its benefits, active learning, in the context of NLP and especially multilingual language models pretraining, has received little consideration. In this paper, we present AfroLM, a multilingual language model pretrained from scratch on 23 African languages (the largest effort to date) using our novel self-active learning framework. Pretrained on a dataset significantly (14x) smaller than existing baselines, AfroLM outperforms many multilingual pretrained language models (AfriBERTa, XLMR-base, mBERT) on various NLP downstream tasks (NER, text classification, and sentiment analysis). Additional out-of-domain sentiment analysis experiments show that AfroLM is able to generalize well across various domains. We release the code source, and our datasets used in our framework at https://github.com/bonaventuredossou/MLM_AL.