The detection of hate speech is a subject extensively explored by researchers, and machine learning algorithms play a crucial role in this domain. The existing resources mostly focus on text sequence classification for the task of hate speech detection. However, the target of hateful content is another dimension that has not been studied in details due to the lack of data resources. In this study, we address this gap by introducing a novel tweet dataset for the task of joint learning of hate speech detection and target detection, called JL-Hate, for the tasks of sequential text classification and token classification, respectively. The JL-Hate dataset consists of 1,530 tweets divided equally in English and Turkish languages. Leveraging this dataset, we conduct a series of benchmark experiments. We utilize a joint learning model to concurrently perform sequence and token classification tasks on our data. Our experimental results demonstrate consistent performance with the prevalent studies, both in sequence and token classification tasks.
Text-embedded images can serve as a means of spreading hate speech, propaganda, and extremist beliefs. Throughout the Russia-Ukraine war, both opposing factions heavily relied on text-embedded images as a vehicle for spreading propaganda and hate speech. Ensuring the effective detection of hate speech and propaganda is of utmost importance to mitigate the negative effect of hate speech dissemination. In this paper, we outline our methodologies for two subtasks of Multimodal Hate Speech Event Detection 2023. For the first subtask, hate speech detection, we utilize multimodal deep learning models boosted by ensemble learning and syntactical text attributes. For the second subtask, target detection, we employ multimodal deep learning models boosted by named entity features. Through experimentation, we demonstrate the superior performance of our models compared to all textual, visual, and text-visual baselines employed in multimodal hate speech detection. Furthermore, our models achieve the first place in both subtasks on the final leaderboard of the shared task.
Automated socio-political protest event detection is a challenging task when multiple languages are considered. In CASE 2022 Task 1, we propose ensemble learning methods for multilingual protest event detection in four subtasks with different granularity levels from document-level to entity-level. We develop an ensemble of fine-tuned Transformer-based language models, along with a post-processing step to regularize the predictions of our ensembles. Our approach places the first place in 6 out of 16 leaderboards organized in seven languages including English, Mandarin, and Turkish.