Jack Hessel


2023

pdf bib
Do Androids Laugh at Electric Sheep? Humor “Understanding” Benchmarks from The New Yorker Caption Contest
Jack Hessel | Ana Marasovic | Jena D. Hwang | Lillian Lee | Jeff Da | Rowan Zellers | Robert Mankoff | Yejin Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large neural networks can now generate jokes, but do they really “understand” humor? We challenge AI models with three tasks derived from the New Yorker Cartoon Caption Contest: matching a joke to a cartoon, identifying a winning caption, and explaining why a winning caption is funny. These tasks encapsulate progressively more sophisticated aspects of “understanding” a cartoon; key elements are the complex, often surprising relationships between images and captions and the frequent inclusion of indirect and playful allusions to human experience and culture. We investigate both multimodal and language-only models: the former are challenged with the cartoon images directly, while the latter are given multifaceted descriptions of the visual scene to simulate human-level visual understanding. We find that both types of models struggle at all three tasks. For example, our best multimodal models fall 30 accuracy points behind human performance on the matching task, and, even when provided ground-truth visual scene descriptors, human-authored explanations are preferred head-to-head over the best machine-authored ones (few-shot GPT-4) in more than 2/3 of cases. We release models, code, leaderboard, and corpus, which includes newly-gathered annotations describing the image’s locations/entities, what’s unusual in the scene, and an explanation of the joke.

pdf bib
Symbolic Chain-of-Thought Distillation: Small Models Can Also “Think” Step-by-Step
Liunian Harold Li | Jack Hessel | Youngjae Yu | Xiang Ren | Kai-Wei Chang | Yejin Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chain-of-thought prompting (e.g., “Let’s think step-by-ste”) primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M—1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.

pdf bib
NovaCOMET: Open Commonsense Foundation Models with Symbolic Knowledge Distillation
Peter West | Ronan Bras | Taylor Sorensen | Bill Lin | Liwei Jiang | Ximing Lu | Khyathi Chandu | Jack Hessel | Ashutosh Baheti | Chandra Bhagavatula | Yejin Choi
Findings of the Association for Computational Linguistics: EMNLP 2023

We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-releaseddiscrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.

pdf bib
Reading Books is Great, But Not if You Are Driving! Visually Grounded Reasoning about Defeasible Commonsense Norms
Seungju Han | Junhyeok Kim | Jack Hessel | Liwei Jiang | Jiwan Chung | Yejin Son | Yejin Choi | Youngjae Yu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Commonsense norms are defeasible by context: reading books is usually great, but not when driving a car. While contexts can be explicitly described in language, in embodied scenarios, contexts are often provided visually. This type of visually grounded reasoning about defeasible commonsense norms is generally easy for humans, but (as we show) poses a challenge for machines, as it necessitates both visual understanding and reasoning about commonsense norms. We construct a new multimodal benchmark for studying commonsense norms: NormLens. NormLens consists of 10K human judgments accompanied by free-form explanations covering 2K multimodal situations, and serves as a probe to address two questions: (1) to what extent can models align with average human judgment? and (2) how well can models explain their predicted judgments? We find that state-of-the-art model judgments and explanations are not well-aligned with human annotation. Additionally, we present a simple yet effective approach to better align models with humans by distilling social commonsense knowledge from large language models. The data and code will be released.

pdf bib
Text encoders bottleneck compositionality in contrastive vision-language models
Amita Kamath | Jack Hessel | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Performant vision-language (VL) models like CLIP represent captions using a single vector. How much information about language is lost in this bottleneck? We first curate CompPrompts, a set of increasingly compositional image captions that VL models should be able to capture (e.g., single object, to object+property, to multiple interacting objects). Then, we train text-only recovery probes that aim to reconstruct captions from single-vector text representations produced by several VL models. This approach does not require images, allowing us to test on a broader range of scenes compared to prior work. We find that: 1) CLIP’s text encoder falls short on more compositional inputs, including object relationships, attribute-object association, counting, and negations; 2) some text encoders work significantly better than others; and 3) text-only recovery performance predicts multimodal matching performance on ControlledImCaps: a new evaluation benchmark we collect and release consisting of fine-grained compositional images and captions. Specifically, our results suggest text-only recoverability is a necessary (but not sufficient) condition for modeling compositional factors in contrastive VL models. We release our datasets and code.

pdf bib
What’s “up” with vision-language models? Investigating their struggle with spatial reasoning
Amita Kamath | Jack Hessel | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent vision-language (VL) models are powerful, but can they reliably distinguish “right” from “left”? We curate three new corpora to quantify model comprehension of such basic spatial relations. These tests isolate spatial reasoning more precisely than existing datasets like VQAv2, e.g., our What’sUp benchmark contains sets of photographs varying only the spatial relations of objects, keeping their identity fixed (see Figure 1: models must comprehend not only the usual case of a dog under a table, but also, the same dog on top of the same table). We evaluate 18 VL models, finding that all perform poorly, e.g., BLIP finetuned on VQAv2, which nears human parity on VQAv2, achieves 56% accuracy on our benchmarks vs. humans at 99%. We conclude by studying causes of this surprising behavior, finding: 1) that popular vision-language pretraining corpora like LAION-2B contain little reliable data for learning spatial relationships; and 2) that basic modeling interventions like up-weighting preposition-containing instances or fine-tuning on our corpora are not sufficient to address the challenges our benchmarks pose. We are hopeful that these corpora will facilitate further research, and we release our data and code at https://github.com/amitakamath/whatsup_vlms.

pdf bib
SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization
Hyunwoo Kim | Jack Hessel | Liwei Jiang | Peter West | Ximing Lu | Youngjae Yu | Pei Zhou | Ronan Bras | Malihe Alikhani | Gunhee Kim | Maarten Sap | Yejin Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Data scarcity has been a long standing issue in the field of open-domain social dialogue. To quench this thirst, we present SODA: the first publicly available, million-scale high-quality social dialogue dataset. By contextualizing social commonsense knowledge from a knowledge graph, we are able to distill an exceptionally broad spectrum of social interactions from a large language model. Human evaluation shows that conversations in SODA are more consistent, specific, and (surprisingly) natural than those in prior human-authored datasets. Using SODA, we train COSMO: a generalizable conversation model that is significantly more natural and consistent on unseen datasets than best-performing conversation models (e.g., GODEL, BlenderBot-1, Koala, Vicuna). Experiments reveal COSMO is sometimes even preferred to the original human-written gold responses. Additionally, our results shed light on the distinction between knowledge-enriched conversations and natural social chitchats. We plan to make our data, model, and code public.

2022

pdf bib
Reframing Human-AI Collaboration for Generating Free-Text Explanations
Sarah Wiegreffe | Jack Hessel | Swabha Swayamdipta | Mark Riedl | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Large language models are increasingly capable of generating fluent-appearing text with relatively little task-specific supervision. But can these models accurately explain classification decisions? We consider the task of generating free-text explanations using human-written examples in a few-shot manner. We find that (1) authoring higher quality prompts results in higher quality generations; and (2) surprisingly, in a head-to-head comparison, crowdworkers often prefer explanations generated by GPT-3 to crowdsourced explanations in existing datasets. Our human studies also show, however, that while models often produce factual, grammatical, and sufficient explanations, they have room to improve along axes such as providing novel information and supporting the label. We create a pipeline that combines GPT-3 with a supervised filter that incorporates binary acceptability judgments from humans in the loop. Despite the intrinsic subjectivity of acceptability judgments, we demonstrate that acceptability is partially correlated with various fine-grained attributes of explanations. Our approach is able to consistently filter GPT-3-generated explanations deemed acceptable by humans.

pdf bib
Connecting the Dots between Audio and Text without Parallel Data through Visual Knowledge Transfer
Yanpeng Zhao | Jack Hessel | Youngjae Yu | Ximing Lu | Rowan Zellers | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Machines that can represent and describe environmental soundscapes have practical potential, e.g., for audio tagging and captioning. Prevailing learning paradigms of audio-text connections have been relying on parallel audio-text data, which is, however, scarcely available on the web. We propose VIP-ANT that induces Audio-Text alignment without using any parallel audio-text data. Our key idea is to share the image modality between bi-modal image-text representations and bi-modal image-audio representations; the image modality functions as a pivot and connects audio and text in a tri-modal embedding space implicitly. In a difficult zero-shot setting with no paired audio-text data, our model demonstrates state-of-the-art zero-shot performance on the ESC50 and US8K audio classification tasks, and even surpasses the supervised state of the art for Clotho caption retrieval (with audio queries) by 2.2% R@1. We further investigate cases of minimal audio-text supervision, finding that, e.g., just a few hundred supervised audio-text pairs increase the zero-shot audio classification accuracy by 8% on US8K. However, to match human parity on some zero-shot tasks, our empirical scaling experiments suggest that we would need about 221 ≈ 2M supervised audio-caption pairs. Our work opens up new avenues for learning audio-text connections with little to no parallel audio-text data.

pdf bib
Symbolic Knowledge Distillation: from General Language Models to Commonsense Models
Peter West | Chandra Bhagavatula | Jack Hessel | Jena Hwang | Liwei Jiang | Ronan Le Bras | Ximing Lu | Sean Welleck | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The common practice for training commonsense models has gone from–human–to–corpus–to–machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from–machine–to–corpus–to–machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al. 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically–as text–in addition to the neural model. We distill only one aspect–the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model’s commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and will share our new symbolic knowledge graph and commonsense models.

2021

pdf bib
How effective is BERT without word ordering? Implications for language understanding and data privacy
Jack Hessel | Alexandra Schofield
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Ordered word sequences contain the rich structures that define language. However, it’s often not clear if or how modern pretrained language models utilize these structures. We show that the token representations and self-attention activations within BERT are surprisingly resilient to shuffling the order of input tokens, and that for several GLUE language understanding tasks, shuffling only minimally degrades performance, e.g., by 4% for QNLI. While bleak from the perspective of language understanding, our results have positive implications for cases where copyright or ethics necessitates the consideration of bag-of-words data (vs. full documents). We simulate such a scenario for three sensitive classification tasks, demonstrating minimal performance degradation vs. releasing full language sequences.

pdf bib
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
Jack Hessel | Ari Holtzman | Maxwell Forbes | Ronan Le Bras | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In this paper, we report the surprising empirical finding that CLIP (Radford et al., 2021), a cross-modal model pretrained on 400M image+caption pairs from the web, can be used for robust automatic evaluation of image captioning without the need for references. Experiments spanning several corpora demonstrate that our new reference-free metric, CLIPScore, achieves the highest correlation with human judgements, outperforming existing reference-based metrics like CIDEr and SPICE. Information gain experiments demonstrate that CLIPScore, with its tight focus on image-text compatibility, is complementary to existing reference-based metrics that emphasize text-text similarities. Thus, we also present a reference-augmented version, RefCLIPScore, which achieves even higher correlation. Beyond literal description tasks, several case studies reveal domains where CLIPScore performs well (clip-art images, alt-text rating), but also where it is relatively weaker in comparison to reference-based metrics, e.g., news captions that require richer contextual knowledge.

2020

pdf bib
Does my multimodal model learn cross-modal interactions? It’s harder to tell than you might think!
Jack Hessel | Lillian Lee
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Modeling expressive cross-modal interactions seems crucial in multimodal tasks, such as visual question answering. However, sometimes high-performing black-box algorithms turn out to be mostly exploiting unimodal signals in the data. We propose a new diagnostic tool, empirical multimodally-additive function projection (EMAP), for isolating whether or not cross-modal interactions improve performance for a given model on a given task. This function projection modifies model predictions so that cross-modal interactions are eliminated, isolating the additive, unimodal structure. For seven image+text classification tasks (on each of which we set new state-of-the-art benchmarks), we find that, in many cases, removing cross-modal interactions results in little to no performance degradation. Surprisingly, this holds even when expressive models, with capacity to consider interactions, otherwise outperform less expressive models; thus, performance improvements, even when present, often cannot be attributed to consideration of cross-modal feature interactions. We hence recommend that researchers in multimodal machine learning report the performance not only of unimodal baselines, but also the EMAP of their best-performing model.

pdf bib
Domain-Specific Lexical Grounding in Noisy Visual-Textual Documents
Gregory Yauney | Jack Hessel | David Mimno
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Images can give us insights into the contextual meanings of words, but current image-text grounding approaches require detailed annotations. Such granular annotation is rare, expensive, and unavailable in most domain-specific contexts. In contrast, unlabeled multi-image, multi-sentence documents are abundant. Can lexical grounding be learned from such documents, even though they have significant lexical and visual overlap? Working with a case study dataset of real estate listings, we demonstrate the challenge of distinguishing highly correlated grounded terms, such as “kitchen” and “bedroom”, and introduce metrics to assess this document similarity. We present a simple unsupervised clustering-based method that increases precision and recall beyond object detection and image tagging baselines when evaluated on labeled subsets of the dataset. The proposed method is particularly effective for local contextual meanings of a word, for example associating “granite” with countertops in the real estate dataset and with rocky landscapes in a Wikipedia dataset.

pdf bib
Beyond Instructional Videos: Probing for More Diverse Visual-Textual Grounding on YouTube
Jack Hessel | Zhenhai Zhu | Bo Pang | Radu Soricut
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pretraining from unlabelled web videos has quickly become the de-facto means of achieving high performance on many video understanding tasks. Features are learned via prediction of grounded relationships between visual content and automatic speech recognition (ASR) tokens. However, prior pretraining work has been limited to only instructional videos; a priori, we expect this domain to be relatively “easy:” speakers in instructional videos will often reference the literal objects/actions being depicted. We ask: can similar models be trained on more diverse video corpora? And, if so, what types of videos are “grounded” and what types are not? We fit a representative pretraining model to the diverse YouTube8M dataset, and study its success and failure cases. We find that visual-textual grounding is indeed possible across previously unexplored video categories, and that pretraining on a more diverse set results in representations that generalize to both non-instructional and instructional domains.

2019

pdf bib
Unsupervised Discovery of Multimodal Links in Multi-image, Multi-sentence Documents
Jack Hessel | Lillian Lee | David Mimno
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Images and text co-occur constantly on the web, but explicit links between images and sentences (or other intra-document textual units) are often not present. We present algorithms that discover image-sentence relationships without relying on explicit multimodal annotation in training. We experiment on seven datasets of varying difficulty, ranging from documents consisting of groups of images captioned post hoc by crowdworkers to naturally-occurring user-generated multimodal documents. We find that a structured training objective based on identifying whether collections of images and sentences co-occur in documents can suffice to predict links between specific sentences and specific images within the same document at test time.

pdf bib
A Case Study on Combining ASR and Visual Features for Generating Instructional Video Captions
Jack Hessel | Bo Pang | Zhenhai Zhu | Radu Soricut
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Instructional videos get high-traffic on video sharing platforms, and prior work suggests that providing time-stamped, subtask annotations (e.g., “heat the oil in the pan”) improves user experiences. However, current automatic annotation methods based on visual features alone perform only slightly better than constant prediction. Taking cues from prior work, we show that we can improve performance significantly by considering automatic speech recognition (ASR) tokens as input. Furthermore, jointly modeling ASR tokens and visual features results in higher performance compared to training individually on either modality. We find that unstated background information is better explained by visual features, whereas fine-grained distinctions (e.g., “add oil” vs. “add olive oil”) are disambiguated more easily via ASR tokens.

pdf bib
Something’s Brewing! Early Prediction of Controversy-causing Posts from Discussion Features
Jack Hessel | Lillian Lee
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Controversial posts are those that split the preferences of a community, receiving both significant positive and significant negative feedback. Our inclusion of the word “community” here is deliberate: what is controversial to some audiences may not be so to others. Using data from several different communities on reddit.com, we predict the ultimate controversiality of posts, leveraging features drawn from both the textual content and the tree structure of the early comments that initiate the discussion. We find that even when only a handful of comments are available, e.g., the first 5 comments made within 15 minutes of the original post, discussion features often add predictive capacity to strong content-and- rate only baselines. Additional experiments on domain transfer suggest that conversation- structure features often generalize to other communities better than conversation-content features do.

2018

pdf bib
Quantifying the Visual Concreteness of Words and Topics in Multimodal Datasets
Jack Hessel | David Mimno | Lillian Lee
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Multimodal machine learning algorithms aim to learn visual-textual correspondences. Previous work suggests that concepts with concrete visual manifestations may be easier to learn than concepts with abstract ones. We give an algorithm for automatically computing the visual concreteness of words and topics within multimodal datasets. We apply the approach in four settings, ranging from image captions to images/text scraped from historical books. In addition to enabling explorations of concepts in multimodal datasets, our concreteness scores predict the capacity of machine learning algorithms to learn textual/visual relationships. We find that 1) concrete concepts are indeed easier to learn; 2) the large number of algorithms we consider have similar failure cases; 3) the precise positive relationship between concreteness and performance varies between datasets. We conclude with recommendations for using concreteness scores to facilitate future multimodal research.

2015

pdf bib
Image Representations and New Domains in Neural Image Captioning
Jack Hessel | Nicolas Savva | Michael Wilber
Proceedings of the Fourth Workshop on Vision and Language