Jack Merullo


2024

pdf bib
Does CLIP Bind Concepts? Probing Compositionality in Large Image Models
Martha Lewis | Nihal Nayak | Peilin Yu | Jack Merullo | Qinan Yu | Stephen Bach | Ellie Pavlick
Findings of the Association for Computational Linguistics: EACL 2024

Large-scale neural network models combining text and images have made incredible progress in recent years. However, it remains an open question to what extent such models encode compositional representations of the concepts over which they operate, such as correctly identifying ‘red cube’ by reasoning over the constituents ‘red’ and ‘cube’. In this work, we focus on the ability of a large pretrained vision and language model (CLIP) to encode compositional concepts and to bind variables in a structure-sensitive way (e.g., differentiating ‘cube behind sphere’ from ‘sphere behind cube’). To inspect the performance of CLIP, we compare several architectures from research on compositional distributional semantics models (CDSMs), a line of research that attempts to implement traditional compositional linguistic structures within embedding spaces. We benchmark them on three synthetic datasets – single-object, two-object, and relational – designed to test concept binding. We find that CLIP can compose concepts in a single-object setting, but in situations where concept binding is needed, performance drops dramatically. At the same time, CDSMs also perform poorly, with best performance at chance level.

2023

pdf bib
Characterizing Mechanisms for Factual Recall in Language Models
Qinan Yu | Jack Merullo | Ellie Pavlick
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) often must integrate facts they memorized in pretraining with new information that appears in a given context. These two sources can disagree, causing competition within the model, and it is unclear how an LM will resolve the conflict. On a dataset that queries for knowledge of world capitals, we investigate both distributional and mechanistic determinants of LM behavior in such situations. Specifically, we measure the proportion of the time an LM will use a counterfactual prefix (e.g., “The capital of Poland is London”) to overwrite what it learned in pretraining (“Warsaw”). On Pythia and GPT2, the training frequency of both the query country (”Poland”) and the in-context city (”London”) highly affect the models’ likelihood of using the counterfactual. We then use head attribution to identify individual attention heads that either promote the memorized answer or the in-context answer in the logits. By scaling up or down the value vector of these heads, we can control the likelihood of using the in-context answer on new data. This method can increase the rate of generating the in-context answer to 88% of the time simply by scaling a single head at runtime. Our work contributes to a body of evidence showing that we can often localize model behaviors to specific components and provides a proof of concept for how future methods might control model behavior dynamically at runtime.

pdf bib
ezCoref: Towards Unifying Annotation Guidelines for Coreference Resolution
Ankita Gupta | Marzena Karpinska | Wenlong Zhao | Kalpesh Krishna | Jack Merullo | Luke Yeh | Mohit Iyyer | Brendan O’Connor
Findings of the Association for Computational Linguistics: EACL 2023

Large-scale, high-quality corpora are critical for advancing research in coreference resolution. However, existing datasets vary in their definition of coreferences and have been collected via complex and lengthy guidelines that are curated for linguistic experts. These concerns have sparked a growing interest among researchers to curate a unified set of guidelines suitable for annotators with various backgrounds. In this work, we develop a crowdsourcing-friendly coreference annotation methodology, ezCoref, consisting of an annotation tool and an interactive tutorial. We use ezCoref to re-annotate 240 passages from seven existing English coreference datasets (spanning fiction, news, and multiple other domains) while teaching annotators only cases that are treated similarly across these datasets. Surprisingly, we find that reasonable quality annotations were already achievable (90% agreement between the crowd and expert annotations) even without extensive training. On carefully analyzing the remaining disagreements, we identify the presence of linguistic cases that our annotators unanimously agree upon but lack unified treatments (e.g., generic pronouns, appositives) in existing datasets. We propose the research community should revisit these phenomena when curating future unified annotation guidelines.

2022

pdf bib
Pretraining on Interactions for Learning Grounded Affordance Representations
Jack Merullo | Dylan Ebert | Carsten Eickhoff | Ellie Pavlick
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

Lexical semantics and cognitive science point to affordances (i.e. the actions that objects support) as critical for understanding and representing nouns and verbs. However, study of these semantic features has not yet been integrated with the ?foundation? models that currently dominate language representation research. We hypothesize that predictive modeling of object state over time will result in representations that encode object affordance information ?for free?. We train a neural network to predict objects? trajectories in a simulated interaction and show that our network?s latent representations differentiate between both observed and unobserved affordances. We find that models trained using 3D simulations outperform conventional 2D computer vision models trained on a similar task, and, on initial inspection, that differences between concepts correspond to expected features (e.g., roll entails rotation) . Our results suggest a way in which modern deep learning approaches to grounded language learning can be integrated with traditional formal semantic notions of lexical representations.

2019

pdf bib
Investigating Sports Commentator Bias within a Large Corpus of American Football Broadcasts
Jack Merullo | Luke Yeh | Abram Handler | Alvin Grissom II | Brendan O’Connor | Mohit Iyyer
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Sports broadcasters inject drama into play-by-play commentary by building team and player narratives through subjective analyses and anecdotes. Prior studies based on small datasets and manual coding show that such theatrics evince commentator bias in sports broadcasts. To examine this phenomenon, we assemble FOOTBALL, which contains 1,455 broadcast transcripts from American football games across six decades that are automatically annotated with 250K player mentions and linked with racial metadata. We identify major confounding factors for researchers examining racial bias in FOOTBALL, and perform a computational analysis that supports conclusions from prior social science studies.