Long sequence modeling has gained broad interest as large language models (LLMs) continue to advance. Recent research has identified that a large portion of hidden states within the key-value caches of Transformer models can be discarded (also termed evicted) withoutaffecting the perplexity performance in generating long sequences. However, we show that these methods, despite preserving perplexity performance, often drop information that is important for solving downstream tasks, a problem which we call information neglect. To address this issue, we introduce Chunked Instruction-aware State Eviction (CItruS), a novel modeling technique that integrates the attention preferences useful for a downstream task into the eviction process of hidden states. In addition, we design a method for chunked sequence processing to further improve efficiency. Our training-free method exhibits superior performance on long sequence comprehension and retrieval tasks over several strong baselines under the same memory budget, while preserving language modeling perplexity. The code and data have been released at https://github.com/ybai-nlp/CItruS.
State-of-the-art language models (LMs) sometimes generate that misalign with world knowledge. To explore the mechanistic causes of these hallucinations, we create diagnostic datasets with subject-relation queries and adapt interpretability methods to trace hallucinations through internal model representations. We discover two general and distinct mechanistic causes of hallucinations shared across LMs (Llama-2, Pythia, GPT-J): 1) : insufficient subject attribute knowledge in lower layer MLPs, and 2) : failure to select the correct object attribute in upper layer attention heads. We also found these two internal mechanistic causes of hallucinations are reflected in external manifestations. Based on insights from our mechanistic analysis, we propose a novel hallucination mitigation method through targeted restoration of the LM’s internal fact recall pipeline, demonstrating superior performance compared to baselines.
Challenge sets such as the Winograd Schema Challenge (WSC) are used to benchmark systems’ ability to resolve ambiguities in natural language. If one assumes as in existing work that solving a given challenge set is at least as difficult as solving some more general task, then high performance on the challenge set should indicate high performance on the general task overall. However, we show empirically that this assumption of difficulty does not always hold. In particular, we demonstrate that despite the strong performance of prompted language models (LMs) on the WSC and its variants, these same modeling techniques perform relatively poorly at resolving certain pronominal ambiguities attested in OntoNotes and related datasets that are perceived to be easier. Motivated by these findings, we propose a method for ensembling a prompted LM with a supervised, task-specific system that is overall more accurate at resolving pronominal coreference across datasets. Finally, we emphasize that datasets involving the same linguistic phenomenon draw on distinct, but overlapping, capabilities, and evaluating on any one dataset alone does not provide a complete picture of a system’s overall capability.
Constituents are groups of words that behave as a syntactic unit. Many linguistic phenomena (e.g., question formation, diathesis alternations) require the manipulation and rearrangement of constituents in a sentence. In this paper, we investigate how different finetuning setups affect the ability of pretrained sequence-to-sequence language models such as BART and T5 to replicate constituency tests — transformations that involve manipulating constituents in a sentence. We design multiple evaluation settings by varying the combinations of constituency tests and sentence types that a model is exposed to during finetuning. We show that models can replicate a linguistic transformation on a specific type of sentence that they saw during finetuning, but performance degrades substantially in other settings, showing a lack of systematic generalization. These results suggest that models often learn to manipulate sentences at a surface level unrelated to the constituent-level syntactic structure, for example by copying the first word of a sentence. These results may partially explain the brittleness of pretrained language models in downstream tasks.