Jackson Pond
2024
Language Models are Surprisingly Fragile to Drug Names in Biomedical Benchmarks
Jack Gallifant
|
Shan Chen
|
Pedro José Ferreira Moreira
|
Nikolaj Munch
|
Mingye Gao
|
Jackson Pond
|
Leo Anthony Celi
|
Hugo Aerts
|
Thomas Hartvigsen
|
Danielle Bitterman
Findings of the Association for Computational Linguistics: EMNLP 2024
Medical knowledge is context-dependent and requires consistent reasoning across various natural language expressions of semantically equivalent phrases. This is particularly crucial for drug names, where patients often use brand names like Advil or Tylenol instead of their generic equivalents. To study this, we create a new robustness dataset, RABBITS, to evaluate performance differences on medical benchmarks after swapping brand and generic drug names using physician expert annotations.We assess both open-source and API-based LLMs on MedQA and MedMCQA, revealing a consistent performance drop ranging from 1-10%. Furthermore, we identify a potential source of this fragility as the contamination of test data in widely used pre-training datasets.
Search
Co-authors
- Danielle Bitterman 1
- Hugo Aerts 1
- Jack Gallifant 1
- Leo Anthony Celi 1
- Mingye Gao 1
- show all...