Jacob Kahn


2023

pdf bib
Reasoning over Public and Private Data in Retrieval-Based Systems
Simran Arora | Patrick Lewis | Angela Fan | Jacob Kahn | Christopher Ré
Transactions of the Association for Computational Linguistics, Volume 11

Users an organizations are generating ever-increasing amounts of private data from a wide range of sources. Incorporating private context is important to personalize open-domain tasks such as question-answering, fact-checking, and personal assistants. State-of-the-art systems for these tasks explicitly retrieve information that is relevant to an input question from a background corpus before producing an answer. While today’s retrieval systems assume relevant corpora are fully (e.g., publicly) accessible, users are often unable or unwilling to expose their private data to entities hosting public data. We define the Split Iterative Retrieval (SPIRAL) problem involving iterative retrieval over multiple privacy scopes. We introduce a foundational benchmark with which to study SPIRAL, as no existing benchmark includes data from a private distribution. Our dataset, ConcurrentQA, includes data from distinct public and private distributions and is the first textual QA benchmark requiring concurrent retrieval over multiple distributions. Finally, we show that existing retrieval approaches face significant performance degradations when applied to our proposed retrieval setting and investigate approaches with which these tradeoffs can be mitigated. We release the new benchmark and code to reproduce the results.1

pdf bib
The Framework Tax: Disparities Between Inference Efficiency in NLP Research and Deployment
Jared Fernandez | Jacob Kahn | Clara Na | Yonatan Bisk | Emma Strubell
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Increased focus on the computational efficiency of systems in natural language processing has motivated the design of efficient model architectures and improvements to underlying hardware accelerators. However, the resulting increases in computational throughput and reductions in floating point operations have not directly translated to improvements in wall-clock inference latency. We demonstrate that these discrepancies can be largely attributed to bottlenecks introduced by deep learning frameworks. We denote this phenomena as the framework tax, and observe that the disparity is growing as hardware speed increases over time. In this work, we examine this phenomena through a series of case studies analyzing the effects of model design decisions, framework paradigms, and hardware platforms on total model latency. Based on our findings, we provide actionable recommendations to researchers and practitioners aimed at narrowing the gap between efficient NLP model research and practice.