Jacopo Urbani
2021
Tribrid: Stance Classification with Neural Inconsistency Detection
Song Yang
|
Jacopo Urbani
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
We study the problem of performing automatic stance classification on social media with neural architectures such as BERT. Although these architectures deliver impressive results, their level is not yet comparable to the one of humans and they might produce errors that have a significant impact on the downstream task (e.g., fact-checking). To improve the performance, we present a new neural architecture where the input also includes automatically generated negated perspectives over a given claim. The model is jointly learned to make simultaneously multiple predictions, which can be used either to improve the classification of the original perspective or to filter out doubtful predictions. In the first case, we propose a weakly supervised method for combining the predictions into a final one. In the second case, we show that using the confidence scores to remove doubtful predictions allows our method to achieve human-like performance over the retained information, which is still a sizable part of the original input.
2018
A Deep Dive into Word Sense Disambiguation with LSTM
Minh Le
|
Marten Postma
|
Jacopo Urbani
|
Piek Vossen
Proceedings of the 27th International Conference on Computational Linguistics
LSTM-based language models have been shown effective in Word Sense Disambiguation (WSD). In particular, the technique proposed by Yuan et al. (2016) returned state-of-the-art performance in several benchmarks, but neither the training data nor the source code was released. This paper presents the results of a reproduction study and analysis of this technique using only openly available datasets (GigaWord, SemCor, OMSTI) and software (TensorFlow). Our study showed that similar results can be obtained with much less data than hinted at by Yuan et al. (2016). Detailed analyses shed light on the strengths and weaknesses of this method. First, adding more unannotated training data is useful, but is subject to diminishing returns. Second, the model can correctly identify both popular and unpopular meanings. Finally, the limited sense coverage in the annotated datasets is a major limitation. All code and trained models are made freely available.