Jaegul Choo


pdf bib
Unsupervised Neural Machine Translation for Low-Resource Domains via Meta-Learning
Cheonbok Park | Yunwon Tae | TaeHee Kim | Soyoung Yang | Mohammad Azam Khan | Lucy Park | Jaegul Choo
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a novel meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains, to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-3 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baselines.

pdf bib
Constructing Multi-Modal Dialogue Dataset by Replacing Text with Semantically Relevant Images
Nyoungwoo Lee | Suwon Shin | Jaegul Choo | Ho-Jin Choi | Sung-Hyon Myaeng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

In multi-modal dialogue systems, it is important to allow the use of images as part of a multi-turn conversation. Training such dialogue systems generally requires a large-scale dataset consisting of multi-turn dialogues that involve images, but such datasets rarely exist. In response, this paper proposes a 45k multi-modal dialogue dataset created with minimal human intervention. Our method to create such a dataset consists of (1) preparing and pre-processing text dialogue datasets, (2) creating image-mixed dialogues by using a text-to-image replacement technique, and (3) employing a contextual-similarity-based filtering step to ensure the contextual coherence of the dataset. To evaluate the validity of our dataset, we devise a simple retrieval model for dialogue sentence prediction tasks. Automatic metrics and human evaluation results on such tasks show that our dataset can be effectively used as training data for multi-modal dialogue systems which require an understanding of images and text in a context-aware manner. Our dataset and generation code is available at https://github.com/shh1574/multi-modal-dialogue-dataset.

pdf bib
Learning to Generate Questions by Learning to Recover Answer-containing Sentences
Seohyun Back | Akhil Kedia | Sai Chetan Chinthakindi | Haejun Lee | Jaegul Choo
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Novel Natural Language Summarization of Program Code via Leveraging Multiple Input Representations
Fuxiang Chen | Mijung Kim | Jaegul Choo
Findings of the Association for Computational Linguistics: EMNLP 2021

The lack of description of a given program code acts as a big hurdle to those developers new to the code base for its understanding. To tackle this problem, previous work on code summarization, the task of automatically generating code description given a piece of code reported that an auxiliary learning model trained to produce API (Application Programming Interface) embeddings showed promising results when applied to a downstream, code summarization model. However, different codes having different summaries can have the same set of API sequences. If we train a model to generate summaries given an API sequence, the model will not be able to learn effectively. Nevertheless, we note that the API sequence can still be useful and has not been actively utilized. This work proposes a novel multi-task approach that simultaneously trains two similar tasks: 1) summarizing a given code (code to summary), and 2) summarizing a given API sequence (API sequence to summary). We propose a novel code-level encoder based on BERT capable of expressing the semantics of code, and obtain representations for every line of code. Our work is the first code summarization work that utilizes a natural language-based contextual pre-trained language model in its encoder. We evaluate our approach using two common datasets (Java and Python) that have been widely used in previous studies. Our experimental results show that our multi-task approach improves over the baselines and achieves the new state-of-the-art.

pdf bib
Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation
Kyeongpil Kang | Kyohoon Jin | Soyoung Yang | Soojin Jang | Jaegul Choo | Youngbin Kim
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Understanding voluminous historical records provides clues on the past in various aspects, such as social and political issues and even natural science facts. However, it is generally difficult to fully utilize the historical records, since most of the documents are not written in a modern language and part of the contents are damaged over time. As a result, restoring the damaged or unrecognizable parts as well as translating the records into modern languages are crucial tasks. In response, we present a multi-task learning approach to restore and translate historical documents based on a self-attention mechanism, specifically utilizing two Korean historical records, ones of the most voluminous historical records in the world. Experimental results show that our approach significantly improves the accuracy of the translation task than baselines without multi-task learning. In addition, we present an in-depth exploratory analysis on our translated results via topic modeling, uncovering several significant historical events.

pdf bib
AVocaDo: Strategy for Adapting Vocabulary to Downstream Domain
Jimin Hong | TaeHee Kim | Hyesu Lim | Jaegul Choo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

During the fine-tuning phase of transfer learning, the pretrained vocabulary remains unchanged, while model parameters are updated. The vocabulary generated based on the pretrained data is suboptimal for downstream data when domain discrepancy exists. We propose to consider the vocabulary as an optimizable parameter, allowing us to update the vocabulary by expanding it with domain specific vocabulary based on a tokenization statistic. Furthermore, we preserve the embeddings of the added words from overfitting to downstream data by utilizing knowledge learned from a pretrained language model with a regularization term. Our method achieved consistent performance improvements on diverse domains (i.e., biomedical, computer science, news, and reviews).


pdf bib
NL2pSQL: Generating Pseudo-SQL Queries from Under-Specified Natural Language Questions
Fuxiang Chen | Seung-won Hwang | Jaegul Choo | Jung-Woo Ha | Sunghun Kim
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Generating SQL codes from natural language questions (NL2SQL) is an emerging research area. Existing studies have mainly focused on clear scenarios where specified information is fully given to generate a SQL query. However, in developer forums such as Stack Overflow, questions cover more diverse tasks including table manipulation or performance issues, where a table is not specified. The SQL query posted in Stack Overflow, Pseudo-SQL (pSQL), does not usually contain table schemas and is not necessarily executable, is sufficient to guide developers. Here we describe a new NL2pSQL task to generate pSQL codes from natural language questions on under-specified database issues, NL2pSQL. In addition, we define two new metrics suitable for the proposed NL2pSQL task, Canonical-BLEU and SQL-BLEU, instead of the conventional BLEU. With a baseline model using sequence-to-sequence architecture integrated by denoising autoencoder, we confirm the validity of our task. Experiments show that the proposed NL2pSQL approach yields well-formed queries (up to 43% more than a standard Seq2Seq model). Our code and datasets will be publicly released.


pdf bib
MemoReader: Large-Scale Reading Comprehension through Neural Memory Controller
Seohyun Back | Seunghak Yu | Sathish Reddy Indurthi | Jihie Kim | Jaegul Choo
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Machine reading comprehension helps machines learn to utilize most of the human knowledge written in the form of text. Existing approaches made a significant progress comparable to human-level performance, but they are still limited in understanding, up to a few paragraphs, failing to properly comprehend lengthy document. In this paper, we propose a novel deep neural network architecture to handle a long-range dependency in RC tasks. In detail, our method has two novel aspects: (1) an advanced memory-augmented architecture and (2) an expanded gated recurrent unit with dense connections that mitigate potential information distortion occurring in the memory. Our proposed architecture is widely applicable to other models. We have performed extensive experiments with well-known benchmark datasets such as TriviaQA, QUASAR-T, and SQuAD. The experimental results demonstrate that the proposed method outperforms existing methods, especially for lengthy documents.