Jaehong Yoon
2024
Carpe diem: On the Evaluation of World Knowledge in Lifelong Language Models
Yujin Kim
|
Jaehong Yoon
|
Seonghyeon Ye
|
Sangmin Bae
|
Namgyu Ho
|
Sung Ju Hwang
|
Se-Young Yun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The dynamic nature of knowledge in an ever-changing world presents challenges for language models trained on static data; the model in the real world often requires not only acquiring new knowledge but also overwriting outdated information into updated ones. To study the ability of language models for these time-dependent dynamics in human language, we introduce a novel task, EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database. The construction of EvolvingQA is automated with our pipeline using large language models. We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge. Our analysis suggests that models fail to rectify knowledge due to small weight gradients. In addition, we elucidate that language models particularly struggle to reflect the change of numerical or temporal information. Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models. Our data construction code and dataset files are available at https://github.com/kimyuji/EvolvingQA_benchmark.
Mementos: A Comprehensive Benchmark for Multimodal Large Language Model Reasoning over Image Sequences
Xiyao Wang
|
Yuhang Zhou
|
Xiaoyu Liu
|
Hongjin Lu
|
Yuancheng Xu
|
Feihong He
|
Jaehong Yoon
|
Taixi Lu
|
Fuxiao Liu
|
Gedas Bertasius
|
Mohit Bansal
|
Huaxiu Yao
|
Furong Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Multimodal Large Language Models (MLLMs) have demonstrated proficiency in handling a variety of visual-language tasks. However, current MLLM benchmarks are predominantly designed to evaluate reasoning based on static information about a single image, and the ability of modern MLLMs to extrapolate from image sequences, which is essential for understanding our ever-changing world, has been less investigated. To address this challenge, this paper introduces Mementos, a new benchmark designed to assess MLLMs’ sequential image reasoning abilities. Mementos features 4,761 diverse image sequences with varying lengths. We also employ a GPT-4 assisted method to evaluate MLLM reasoning performance. Through a careful evaluation of nine recent MLLMs on Mementos, including GPT-4V and Gemini, we find that they struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects and their corresponding behaviors. Our quantitative analysis and case studies identify three key factors impacting MLLMs’ sequential image reasoning: the correlation between object and behavioral hallucinations, the influence of co-occurring behaviors, and the compounding impact of behavioral hallucinations.
Search
Co-authors
- Yujin Kim 1
- Seonghyeon Ye 1
- Sangmin Bae 1
- Namgyu Ho 1
- Sung Ju Hwang 1
- show all...