Jaehoon Kim
2024
PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detection
Someen Park
|
Jaehoon Kim
|
Seungwan Jin
|
Sohyun Park
|
Kyungsik Han
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
While a few public benchmarks have been proposed for training hate speech detection models, the differences in labeling criteria between these benchmarks pose challenges for generalized learning, limiting the applicability of the models. Previous research has presented methods to generalize models through data integration or augmentation, but overcoming the differences in labeling criteria between datasets remains a limitation. To address these challenges, we propose PREDICT, a novel framework that uses the notion of multi-agent for hate speech detection. PREDICT consists of two phases: (1) PRE (Perspective-based REasoning): Multiple agents are created based on the induced labeling criteria of given datasets, and each agent generates stances and reasons; (2) DICT (Debate using InCongruenT references): Agents representing hate and non-hate stances conduct the debate, and a judge agent classifies hate or non-hate and provides a balanced reason. Experiments on five representative public benchmarks show that PREDICT achieves superior cross-evaluation performance compared to methods that focus on specific labeling criteria or majority voting methods. Furthermore, we validate that PREDICT effectively mediates differences between agents’ opinions and appropriately incorporates minority opinions to reach a consensus. Our code is available at https://github.com/Hanyang-HCC-Lab/PREDICT
Label-aware Hard Negative Sampling Strategies with Momentum Contrastive Learning for Implicit Hate Speech Detection
Jaehoon Kim
|
Seungwan Jin
|
Sohyun Park
|
Someen Park
|
Kyungsik Han
Findings of the Association for Computational Linguistics: ACL 2024
Detecting implicit hate speech that is not directly hateful remains a challenge. Recent research has attempted to detect implicit hate speech by applying contrastive learning to pre-trained language models such as BERT and RoBERTa, but the proposed models still do not have a significant advantage over cross-entropy loss-based learning. We found that contrastive learning based on randomly sampled batch data does not encourage the model to learn hard negative samples. In this work, we propose Label-aware Hard Negative sampling strategies (LAHN) that encourage the model to learn detailed features from hard negative samples, instead of naive negative samples in random batch, using momentum-integrated contrastive learning. LAHN outperforms the existing models for implicit hate speech detection both in- and cross-datasets. The code is available at https://github.com/Hanyang-HCC-Lab/LAHN