Jaemin Cho


2022

pdf bib
Fine-grained Image Captioning with CLIP Reward
Jaemin Cho | Seunghyun Yoon | Ajinkya Kale | Franck Dernoncourt | Trung Bui | Mohit Bansal
Findings of the Association for Computational Linguistics: NAACL 2022

Modern image captioning models are usually trained with text similarity objectives. However, since reference captions in public datasets often describe the most salient common objects, models trained with the text similarity objectives tend to ignore specific and detailed aspects of an image that distinguish it from others. Towards more descriptive and distinctive caption generation, we propose to use CLIP, a multimodal encoder trained on huge image-text pairs from the web, to calculate multi-modal similarity and use it as a reward function. We also propose a simple finetuning strategy of CLIP text encoder to improve grammar that does not require extra text annotation. This completely eliminates the need for reference captions during the reward computation. To comprehensively evaluate descriptive captions, we introduce FineCapEval, a new dataset for caption evaluation with fine-grained criteria: overall, background, object, relations. In our experiments on text-to-image retrieval and FineCapEval, the proposed CLIP-guided model generates more distinctive captions than the CIDEroptimized model. We also show that our unsupervised grammar finetuning of the CLIP text encoder alleviates the degeneration problem of the naive CLIP reward. Lastly, we show human analysis where the annotators strongly prefer CLIP reward to CIDEr and MLE objectives on diverse criteria.

2020

pdf bib
X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers
Jaemin Cho | Jiasen Lu | Dustin Schwenk | Hannaneh Hajishirzi | Aniruddha Kembhavi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Mirroring the success of masked language models, vision-and-language counterparts like VILBERT, LXMERT and UNITER have achieved state of the art performance on a variety of multimodal discriminative tasks like visual question answering and visual grounding. Recent work has also successfully adapted such models towards the generative task of image captioning. This begs the question: Can these models go the other way and generate images from pieces of text? Our analysis of a popular representative from this model family – LXMERT – finds that it is unable to generate rich and semantically meaningful imagery with its current training setup. We introduce X-LXMERT, an extension to LXMERT with training refinements including: discretizing visual representations, using uniform masking with a large range of masking ratios and aligning the right pre-training datasets to the right objectives which enables it to paint. X-LXMERT’s image generation capabilities rival state of the art generative models while its question answering and captioning abilities remains comparable to LXMERT. Finally, we demonstrate the generality of these training refinements by adding image generation capabilities into UNITER to produce X-UNITER.

2019

pdf bib
Mixture Content Selection for Diverse Sequence Generation
Jaemin Cho | Minjoon Seo | Hannaneh Hajishirzi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Generating diverse sequences is important in many NLP applications such as question generation or summarization that exhibit semantically one-to-many relationships between source and the target sequences. We present a method to explicitly separate diversification from generation using a general plug-and-play module (called SELECTOR) that wraps around and guides an existing encoder-decoder model. The diversification stage uses a mixture of experts to sample different binary masks on the source sequence for diverse content selection. The generation stage uses a standard encoder-decoder model given each selected content from the source sequence. Due to the non-differentiable nature of discrete sampling and the lack of ground truth labels for binary mask, we leverage a proxy for ground truth mask and adopt stochastic hard-EM for training. In question generation (SQuAD) and abstractive summarization (CNN-DM), our method demonstrates significant improvements in accuracy, diversity and training efficiency, including state-of-the-art top-1 accuracy in both datasets, 6% gain in top-5 accuracy, and 3.7 times faster training over a state-of-the-art model. Our code is publicly available at https://github.com/clovaai/FocusSeq2Seq.

2018

pdf bib
A Hierarchical Latent Structure for Variational Conversation Modeling
Yookoon Park | Jaemin Cho | Gunhee Kim
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Variational autoencoders (VAE) combined with hierarchical RNNs have emerged as a powerful framework for conversation modeling. However, they suffer from the notorious degeneration problem, where the decoders learn to ignore latent variables and reduce to vanilla RNNs. We empirically show that this degeneracy occurs mostly due to two reasons. First, the expressive power of hierarchical RNN decoders is often high enough to model the data using only its decoding distributions without relying on the latent variables. Second, the conditional VAE structure whose generation process is conditioned on a context, makes the range of training targets very sparse; that is, the RNN decoders can easily overfit to the training data ignoring the latent variables. To solve the degeneration problem, we propose a novel model named Variational Hierarchical Conversation RNNs (VHCR), involving two key ideas of (1) using a hierarchical structure of latent variables, and (2) exploiting an utterance drop regularization. With evaluations on two datasets of Cornell Movie Dialog and Ubuntu Dialog Corpus, we show that our VHCR successfully utilizes latent variables and outperforms state-of-the-art models for conversation generation. Moreover, it can perform several new utterance control tasks, thanks to its hierarchical latent structure.