Jaeyoung Lee
2024
ESG-Kor: A Korean Dataset for ESG-related Information Extraction and Practical Use Cases
Jaeyoung Lee
|
Geonyeong Son
|
Misuk Kim
Findings of the Association for Computational Linguistics: EMNLP 2024
With the expansion of pre-trained language model usage in recent years, the importance of datasets for performing tasks in specialized domains has significantly increased. Therefore, we have built a Korean dataset called ESG-Kor to automatically extract Environmental, Social, and Governance (ESG) information, which has recently gained importance. ESG-Kor is a dataset consisting of a total of 118,946 sentences that extracted information on each ESG component from Korean companies’ sustainability reports and manually labeled it according to objective rules provided by ESG evaluation agencies. To verify the effectiveness and applicability of the ESG-Kor dataset, classification performance was confirmed using several Korean pre-trained language models, and significant performance was obtained. Additionally, by extending the ESG classification model to documents of small and medium enterprises and extracting information based on ESG key issues and in-depth analysis, we demonstrated potential and practical use cases in the ESG field.
How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models
Jaeyoung Lee
|
Ximing Lu
|
Jack Hessel
|
Faeze Brahman
|
Youngjae Yu
|
Yonatan Bisk
|
Yejin Choi
|
Saadia Gabriel
Findings of the Association for Computational Linguistics: EMNLP 2024
Given the growing influx of misinformation across news and social media, there is a critical need for systems that can provide effective real-time verification of news claims. Large language or multimodal model based verification has been proposed to scale up online policing mechanisms for mitigating spread of false and harmful content. While these can potentially reduce burden on human fact-checkers, such efforts may be hampered by foundation model training data becoming outdated. In this work, we test the limits of improving foundation model performance without continual updating through an initial study of knowledge transfer using either existing intra- and inter-domain benchmarks or explanations generated from large language models (LLMs).We evaluate on 12 public benchmarks for fact-checking and misinformation detection as well as two other tasks relevant to content moderation - toxicity and stance detection. Our results on two recent multi-modal fact-checking benchmarks, Mocheg and Fakeddit, indicate that knowledge transfer strategies can improve Fakeddit performance over the state-of-the-art by up to 1.7% and Mocheg performance by up to 2.9%. The code, model checkpoints, and dataset are available: https://github.com/given131/ fact-verifier-knowledge-transfer.
Hierarchical Graph Convolutional Network Approach for Detecting Low-Quality Documents
Jaeyoung Lee
|
Joonwon Jang
|
Misuk Kim
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Consistency within a document is a crucial feature indicative of its quality. Recently, within the vast amount of information produced across various media, there exists a significant number of low-quality documents that either lack internal consistency or contain content utterly unrelated to their headlines. Such low-quality documents induce fatigue in readers and undermine the credibility of the media source that provided them. Consequently, research to automatically detect these low-quality documents based on natural language processing is imperative. In this study, we introduce a hierarchical graph convolutional network (HGCN) that can detect internal inconsistencies within a document and incongruences between the title and body. Moreover, we constructed the Inconsistency Dataset, leveraging published news data and its meta-data, to train our model to detect document inconsistencies. Experimental results demonstrated that the HGCN achieved superior performance with an accuracy of 91.20% on our constructed Inconsistency Dataset, outperforming other comparative models. Additionally, on the publicly available incongruent-related dataset, the proposed methodology demonstrated a performance of 92.00%, validating its general applicability. Finally, an ablation study further confirmed the significant impact of meta-data utilization on performance enhancement. We anticipate that our model can be universally applied to detect and filter low-quality documents in the real world.
Search
Fix data
Co-authors
- Misuk Kim 2
- Yonatan Bisk 1
- Faeze Brahman 1
- Yejin Choi 1
- Saadia Gabriel 1
- show all...