Jaime Lorenzo-Trueba


pdf bib
Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems
Shubhi Tyagi | Antonio Bonafonte | Jaime Lorenzo-Trueba | Javier Latorre
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

Developing Text Normalization (TN) systems for Text-to-Speech (TTS) on new languages is hard. We propose a novel architecture to facilitate it for multiple languages while using data less than 3% of the size of the data used by the state of the art results on English. We treat TN as a sequence classification problem and propose a granular tokenization mechanism that enables the system to learn majority of the classes and their normalizations from the training data itself. This is further combined with minimal precoded linguistic knowledge for other classes. We publish the first results on TN for TTS in Spanish and Tamil and also demonstrate that the performance of the approach is comparable with the previous work done on English. All annotated datasets used for experimentation will be released.


pdf bib
In Other News: a Bi-style Text-to-speech Model for Synthesizing Newscaster Voice with Limited Data
Nishant Prateek | Mateusz Łajszczak | Roberto Barra-Chicote | Thomas Drugman | Jaime Lorenzo-Trueba | Thomas Merritt | Srikanth Ronanki | Trevor Wood
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Neural text-to-speech synthesis (NTTS) models have shown significant progress in generating high-quality speech, however they require a large quantity of training data. This makes creating models for multiple styles expensive and time-consuming. In this paper different styles of speech are analysed based on prosodic variations, from this a model is proposed to synthesise speech in the style of a newscaster, with just a few hours of supplementary data. We pose the problem of synthesising in a target style using limited data as that of creating a bi-style model that can synthesise both neutral-style and newscaster-style speech via a one-hot vector which factorises the two styles. We also propose conditioning the model on contextual word embeddings, and extensively evaluate it against neutral NTTS, and neutral concatenative-based synthesis. This model closes the gap in perceived style-appropriateness between natural recordings for newscaster-style of speech, and neutral speech synthesis by approximately two-thirds.


pdf bib
Continuous Expressive Speaking Styles Synthesis based on CVSM and MR-HMM
Jaime Lorenzo-Trueba | Roberto Barra-Chicote | Ascension Gallardo-Antolin | Junichi Yamagishi | Juan M. Montero
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper introduces a continuous system capable of automatically producing the most adequate speaking style to synthesize a desired target text. This is done thanks to a joint modeling of the acoustic and lexical parameters of the speaker models by adapting the CVSM projection of the training texts using MR-HMM techniques. As such, we consider that as long as sufficient variety in the training data is available, we should be able to model a continuous lexical space into a continuous acoustic space. The proposed continuous automatic text to speech system was evaluated by means of a perceptual evaluation in order to compare them with traditional approaches to the task. The system proved to be capable of conveying the correct expressiveness (average adequacy of 3.6) with an expressive strength comparable to oracle traditional expressive speech synthesis (average of 3.6) although with a drop in speech quality mainly due to the semi-continuous nature of the data (average quality of 2.9). This means that the proposed system is capable of improving traditional neutral systems without requiring any additional user interaction.