James Barry


pdf bib
The DCU-EPFL Enhanced Dependency Parser at the IWPT 2021 Shared Task
James Barry | Alireza Mohammadshahi | Joachim Wagner | Jennifer Foster | James Henderson
Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021)

We describe the DCU-EPFL submission to the IWPT 2021 Parsing Shared Task: From Raw Text to Enhanced Universal Dependencies. The task involves parsing Enhanced UD graphs, which are an extension of the basic dependency trees designed to be more facilitative towards representing semantic structure. Evaluation is carried out on 29 treebanks in 17 languages and participants are required to parse the data from each language starting from raw strings. Our approach uses the Stanza pipeline to preprocess the text files, XLM-RoBERTa to obtain contextualized token representations, and an edge-scoring and labeling model to predict the enhanced graph. Finally, we run a postprocessing script to ensure all of our outputs are valid Enhanced UD graphs. Our system places 6th out of 9 participants with a coarse Enhanced Labeled Attachment Score (ELAS) of 83.57. We carry out additional post-deadline experiments which include using Trankit for pre-processing, XLM-RoBERTa LARGE, treebank concatenation, and multitask learning between a basic and an enhanced dependency parser. All of these modifications improve our initial score and our final system has a coarse ELAS of 88.04.


pdf bib
Treebank Embedding Vectors for Out-of-Domain Dependency Parsing
Joachim Wagner | James Barry | Jennifer Foster
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A recent advance in monolingual dependency parsing is the idea of a treebank embedding vector, which allows all treebanks for a particular language to be used as training data while at the same time allowing the model to prefer training data from one treebank over others and to select the preferred treebank at test time. We build on this idea by 1) introducing a method to predict a treebank vector for sentences that do not come from a treebank used in training, and 2) exploring what happens when we move away from predefined treebank embedding vectors during test time and instead devise tailored interpolations. We show that 1) there are interpolated vectors that are superior to the predefined ones, and 2) treebank vectors can be predicted with sufficient accuracy, for nine out of ten test languages, to match the performance of an oracle approach that knows the most suitable predefined treebank embedding for the test set.

pdf bib
The ADAPT Enhanced Dependency Parser at the IWPT 2020 Shared Task
James Barry | Joachim Wagner | Jennifer Foster
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

We describe the ADAPT system for the 2020 IWPT Shared Task on parsing enhanced Universal Dependencies in 17 languages. We implement a pipeline approach using UDPipe and UDPipe-future to provide initial levels of annotation. The enhanced dependency graph is either produced by a graph-based semantic dependency parser or is built from the basic tree using a small set of heuristics. Our results show that, for the majority of languages, a semantic dependency parser can be successfully applied to the task of parsing enhanced dependencies. Unfortunately, we did not ensure a connected graph as part of our pipeline approach and our competition submission relied on a last-minute fix to pass the validation script which harmed our official evaluation scores significantly. Our submission ranked eighth in the official evaluation with a macro-averaged coarse ELAS F1 of 67.23 and a treebank average of 67.49. We later implemented our own graph-connecting fix which resulted in a score of 79.53 (language average) or 79.76 (treebank average), which would have placed fourth in the competition evaluation.


pdf bib
Cross-lingual Parsing with Polyglot Training and Multi-treebank Learning: A Faroese Case Study
James Barry | Joachim Wagner | Jennifer Foster
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Cross-lingual dependency parsing involves transferring syntactic knowledge from one language to another. It is a crucial component for inducing dependency parsers in low-resource scenarios where no training data for a language exists. Using Faroese as the target language, we compare two approaches using annotation projection: first, projecting from multiple monolingual source models; second, projecting from a single polyglot model which is trained on the combination of all source languages. Furthermore, we reproduce multi-source projection (Tyers et al., 2018), in which dependency trees of multiple sources are combined. Finally, we apply multi-treebank modelling to the projected treebanks, in addition to or alternatively to polyglot modelling on the source side. We find that polyglot training on the source languages produces an overall trend of better results on the target language but the single best result for the target language is obtained by projecting from monolingual source parsing models and then training multi-treebank POS tagging and parsing models on the target side.

pdf bib
Designing a Symbolic Intermediate Representation for Neural Surface Realization
Henry Elder | Jennifer Foster | James Barry | Alexander O’Connor
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation

Generated output from neural NLG systems often contain errors such as hallucination, repetition or contradiction. This work focuses on designing a symbolic intermediate representation to be used in multi-stage neural generation with the intention of reducing the frequency of failed outputs. We show that surface realization from this intermediate representation is of high quality and when the full system is applied to the E2E dataset it outperforms the winner of the E2E challenge. Furthermore, by breaking out the surface realization step from typically end-to-end neural systems, we also provide a framework for non-neural based content selection and planning systems to potentially take advantage of semi-supervised pretraining of neural surface realization models.