James Clark
2022
Kronecker Decomposition for GPT Compression
Ali Edalati
|
Marzieh Tahaei
|
Ahmad Rashid
|
Vahid Nia
|
James Clark
|
Mehdi Rezagholizadeh
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
GPT is an auto-regressive Transformer-based pre-trained language model which has attracted a lot of attention in the natural language processing (NLP) domain. The success of GPT is mostly attributed to its pre-training on huge amount of data and its large number of parameters. Despite the superior performance of GPT, this overparameterized nature of GPT can be very prohibitive for deploying this model on devices with limited computational power or memory. This problem can be mitigated using model compression techniques; however, compressing GPT models has not been investigated much in the literature. In this work, we use Kronecker decomposition to compress the linear mappings of the GPT-2 model. Our Kronecker GPT-2 model (KnGPT2) is initialized based on the Kronecker decomposed version of the GPT-2 model and then is undergone a very light pre- training on only a small portion of the training data with intermediate layer knowledge distillation (ILKD). Finally, our KnGPT2 is fine-tuned on downstream tasks using ILKD as well. We evaluate our model on both language modeling and General Language Understanding Evaluation benchmark tasks and show that with more efficient pre-training and similar number of parameters, our KnGPT2 outperforms the existing DistilGPT2 model significantly.
Efficient Two-Stage Progressive Quantization of BERT
Charles Le
|
Arash Ardakani
|
Amir Ardakani
|
Hang Zhang
|
Yuyan Chen
|
James Clark
|
Brett Meyer
|
Warren Gross
Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)
The success of large BERT models has raised the demand for model compression methods to reduce model size and computational cost. Quantization can reduce the model size and inference latency, making inference more efficient, without changing its stucture, but it comes at the cost of performance degradation. Due to the complex loss landscape of ternarized/binarized BERT, we present an efficient two-stage progressive quantization method in which we fine tune the model with quantized weights and progressively lower its bits, and then we fine tune the model with quantized weights and activations. At the same time, we strategically choose which bitwidth to fine-tune on and to initialize from, and which bitwidth to fine-tune under augmented data to outperform the existing BERT binarization methods without adding an extra module, compressing the binary model 18% more than previous binarization methods or compressing BERT by 31x w.r.t. to the full-precision model. Our method without data augmentation can outperform existing BERT ternarization methods.
Search
Co-authors
- Ali Edalati 1
- Marzieh Tahaei 1
- Ahmad Rashid 1
- Vahid Nia 1
- Mehdi Rezagholizadeh 1
- show all...