James Zou


2023

pdf bib
Beyond Positive Scaling: How Negation Impacts Scaling Trends of Language Models
Yuhui Zhang | Michihiro Yasunaga | Zhengping Zhou | Jeff Z. HaoChen | James Zou | Percy Liang | Serena Yeung
Findings of the Association for Computational Linguistics: ACL 2023

Language models have been shown to exhibit positive scaling, where performance improves as models are scaled up in terms of size, compute, or data. In this work, we introduce NeQA, a dataset consisting of questions with negation in which language models do not exhibit straightforward positive scaling. We show that this task can exhibit inverse scaling, U-shaped scaling, or positive scaling, and the three scaling trends shift in this order as we use more powerful prompting methods or model families. We hypothesize that solving NeQA depends on two subtasks: question answering (task 1) and negation understanding (task 2). We find that task 1 has linear scaling, while task 2 has sigmoid-shaped scaling with an emergent transition point, and composing these two scaling trends yields the final scaling trend of NeQA. Our work reveals and provides a way to analyze the complex scaling trends of language models.

2022

pdf bib
SEAL: Interactive Tool for Systematic Error Analysis and Labeling
Nazneen Rajani | Weixin Liang | Lingjiao Chen | Margaret Mitchell | James Zou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

With the advent of Transformers, large language models (LLMs) have saturated well-known NLP benchmarks and leaderboards with high aggregate performance. However, many times these models systematically fail on tail data or rare groups not obvious in aggregate evaluation. Identifying such problematic data groups is even more challenging when there are no explicit labels (e.g., ethnicity, gender, etc.) and further compounded for NLP datasets due to the lack of visual features to characterize failure modes (e.g., Asian males, animals indoors, waterbirds on land etc.). This paper introduces an interactive Systematic Error Analysis and Labeling (SEAL) tool that uses a two-step approach to first identify high-error slices of data and then, in the second step, introduce methods to give human-understandable semantics to those underperforming slices. We explore a variety of methods for coming up with coherent semantics for the error groups using language models for semantic labeling and a text-to-image model for generating visual features.SEAL is available at https://huggingface.co/spaces/nazneen/seal.

2020

pdf bib
Beyond User Self-Reported Likert Scale Ratings: A Comparison Model for Automatic Dialog Evaluation
Weixin Liang | James Zou | Zhou Yu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Open Domain dialog system evaluation is one of the most important challenges in dialog research. Existing automatic evaluation metrics, such as BLEU are mostly reference-based. They calculate the difference between the generated response and a limited number of available references. Likert-score based self-reported user rating is widely adopted by social conversational systems, such as Amazon Alexa Prize chatbots. However, self-reported user rating suffers from bias and variance among different users. To alleviate this problem, we formulate dialog evaluation as a comparison task. We also propose an automatic evaluation model CMADE (Comparison Model for Automatic Dialog Evaluation) that automatically cleans self-reported user ratings as it trains on them. Specifically, we first use a self-supervised method to learn better dialog feature representation, and then use KNN and Shapley to remove confusing samples. Our experiments show that CMADE achieves 89.2% accuracy in the dialog comparison task.

pdf bib
Explaining the Trump Gap in Social Distancing Using COVID Discourse
Austin Van Loon | Sheridan Stewart | Brandon Waldon | Shrinidhi K Lakshmikanth | Ishan Shah | Sharath Chandra Guntuku | Garrick Sherman | James Zou | Johannes Eichstaedt
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

Our ability to limit the future spread of COVID-19 will in part depend on our understanding of the psychological and sociological processes that lead people to follow or reject coronavirus health behaviors. We argue that the virus has taken on heterogeneous meanings in communities across the United States and that these disparate meanings shaped communities’ response to the virus during the early, vital stages of the outbreak in the U.S. Using word embeddings, we demonstrate that counties where residents socially distanced less on average (as measured by residential mobility) more semantically associated the virus in their COVID discourse with concepts of fraud, the political left, and more benign illnesses like the flu. We also show that the different meanings the virus took on in different communities explains a substantial fraction of what we call the “”Trump Gap”, or the empirical tendency for more Trump-supporting counties to socially distance less. This work demonstrates that community-level processes of meaning-making in part determined behavioral responses to the COVID-19 pandemic and that these processes can be measured unobtrusively using Twitter.

pdf bib
ALICE: Active Learning with Contrastive Natural Language Explanations
Weixin Liang | James Zou | Zhou Yu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Training a supervised neural network classifier typically requires many annotated training samples. Collecting and annotating a large number of data points are costly and sometimes even infeasible. Traditional annotation process uses a low-bandwidth human-machine communication interface: classification labels, each of which only provides a few bits of information. We propose Active Learning with Contrastive Explanations (ALICE), an expert-in-the-loop training framework that utilizes contrastive natural language explanations to improve data efficiency in learning. AL-ICE learns to first use active learning to select the most informative pairs of label classes to elicit contrastive natural language explanations from experts. Then it extracts knowledge from these explanations using a semantic parser. Finally, it incorporates the extracted knowledge through dynamically changing the learning model’s structure. We applied ALICEin two visual recognition tasks, bird species classification and social relationship classification. We found by incorporating contrastive explanations, our models outperform baseline models that are trained with 40-100% more training data. We found that adding1expla-nation leads to similar performance gain as adding 13-30 labeled training data points.

2019

pdf bib
Analyzing Polarization in Social Media: Method and Application to Tweets on 21 Mass Shootings
Dorottya Demszky | Nikhil Garg | Rob Voigt | James Zou | Jesse Shapiro | Matthew Gentzkow | Dan Jurafsky
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We provide an NLP framework to uncover four linguistic dimensions of political polarization in social media: topic choice, framing, affect and illocutionary force. We quantify these aspects with existing lexical methods, and propose clustering of tweet embeddings as a means to identify salient topics for analysis across events; human evaluations show that our approach generates more cohesive topics than traditional LDA-based models. We apply our methods to study 4.4M tweets on 21 mass shootings. We provide evidence that the discussion of these events is highly polarized politically and that this polarization is primarily driven by partisan differences in framing rather than topic choice. We identify framing devices, such as grounding and the contrasting use of the terms “terrorist” and “crazy”, that contribute to polarization. Results pertaining to topic choice, affect and illocutionary force suggest that Republicans focus more on the shooter and event-specific facts (news) while Democrats focus more on the victims and call for policy changes. Our work contributes to a deeper understanding of the way group divisions manifest in language and to computational methods for studying them.

2017

pdf bib
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
Shyam Upadhyay | Kai-Wei Chang | Matt Taddy | Adam Kalai | James Zou
Proceedings of the 2nd Workshop on Representation Learning for NLP

Word embeddings, which represent a word as a point in a vector space, have become ubiquitous to several NLP tasks. A recent line of work uses bilingual (two languages) corpora to learn a different vector for each sense of a word, by exploiting crosslingual signals to aid sense identification. We present a multi-view Bayesian non-parametric algorithm which improves multi-sense wor d embeddings by (a) using multilingual (i.e., more than two languages) corpora to significantly improve sense embeddings beyond what one achieves with bilingual information, and (b) uses a principled approach to learn a variable number of senses per word, in a data-driven manner. Ours is the first approach with the ability to leverage multilingual corpora efficiently for multi-sense representation learning. Experiments show that multilingual training significantly improves performance over monolingual and bilingual training, by allowing us to combine different parallel corpora to leverage multilingual context. Multilingual training yields comparable performance to a state of the art monolingual model trained on five times more training data.