Most task-oriented dialogue (TOD) benchmarks assume users that know exactly how to use the system by constraining the user behaviors within the system’s capabilities via strict user goals, namely “user familiarity” bias. This data bias deepens when it combines with data-driven TOD systems, as it is impossible to fathom the effect of it with existing static evaluations. Hence, we conduct an interactive user study to unveil how vulnerable TOD systems are against realistic scenarios. In particular, we compare users with 1) detailed goal instructions that conform to the system boundaries (closed-goal) and 2) vague goal instructions that are often unsupported but realistic (open-goal). Our study reveals that conversations in open-goal settings lead to catastrophic failures of the system, in which 92% of the dialogues had significant issues. Moreover, we conduct a thorough analysis to identify distinctive features between the two settings through error annotation. From this, we discover a novel “pretending” behavior, in which the system pretends to handle the user requests even though they are beyond the system’s capabilities. We discuss its characteristics and toxicity while showing recent large language models can also suffer from this behavior.
Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available.
Since the remarkable generation performance of large language models raised ethical and legal concerns, approaches to detect machine-generated text by embedding watermarks are being developed.However, we discover that the existing works fail to function appropriately in code generation tasks due to the task’s nature of having low entropy.Extending a logit-modifying watermark method, we propose Selective WatErmarking via Entropy Thresholding (SWEET), which enhances detection ability and mitigates code quality degeneration by removing low-entropy segments at generating and detecting watermarks.Our experiments show that SWEET significantly improves code quality preservation while outperforming all baselines, including post-hoc detection methods, in detecting machine-generated code text.Our code is available inhttps://github.com/hongcheki/sweet-watermark.
Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.
Aligning large language models (LLMs) to human values has become increasingly important as it enables sophisticated steering of LLMs. However, it requires significant human demonstrations and feedback or distillation from proprietary LLMs such as ChatGPT. In this work, we propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations and proprietary LLMs. First, we perform reward modeling (RM) with synthetic feedback by contrasting responses from vanilla LLMs with various sizes and prompts. Then, we use the RM to simulate high-quality demonstrations to train a supervised policy and further optimize the model with reinforcement learning. Our resulting model, Aligned Language Model with Synthetic Training dataset (ALMoST), outperforms recent open-sourced models, which are trained on the outputs of InstructGPT or human-annotated demonstrations, in alignment benchmarks. In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively. Further analyses demonstrate the efficacy and importance of synthetic feedback in our framework.
The automatic generation of Multiple Choice Questions (MCQ) has the potential to reduce the time educators spend on student assessment significantly. However, existing evaluation metrics for MCQ generation, such as BLEU, ROUGE, and METEOR, focus on the n-gram based similarity of the generated MCQ to the gold sample in the dataset and disregard their educational value.They fail to evaluate the MCQ’s ability to assess the student’s knowledge of the corresponding target fact. To tackle this issue, we propose a novel automatic evaluation metric, coined Knowledge Dependent Answerability (KDA), which measures the MCQ’s answerability given knowledge of the target fact. Specifically, we first show how to measure KDA based on student responses from a human survey.Then, we propose two automatic evaluation metrics, KDA_disc and KDA_cont, that approximate KDA by leveraging pre-trained language models to imitate students’ problem-solving behavior.Through our human studies, we show that KDA_disc and KDA_soft have strong correlations with both (1) KDA and (2) usability in an actual classroom setting, labeled by experts. Furthermore, when combined with n-gram based similarity metrics, KDA_disc and KDA_cont are shown to have a strong predictive power for various expert-labeled MCQ quality measures.
Annotating task-oriented dialogues is notorious for the expensive and difficult data collection process. Few-shot dialogue state tracking (DST) is a realistic solution to this problem. In this paper, we hypothesize that dialogue summaries are essentially unstructured dialogue states; hence, we propose to reformulate dialogue state tracking as a dialogue summarization problem. To elaborate, we train a text-to-text language model with synthetic template-based dialogue summaries, generated by a set of rules from the dialogue states. Then, the dialogue states can be recovered by inversely applying the summary generation rules. We empirically show that our method DS2 outperforms previous works on few-shot DST in MultiWoZ 2.0 and 2.1, in both cross-domain and multi-domain settings. Our method also exhibits vast speedup during both training and inference as it can generate all states at once. Finally, based on our analysis, we discover that the naturalness of the summary templates plays a key role for successful training.
Recently, end-to-end neural network-based approaches have shown significant improvements over traditional pipeline-based models in English coreference resolution. However, such advancements came at a cost of computational complexity and recent works have not focused on tackling this problem. Hence, in this paper, to cope with this issue, we propose BERT-SRU-based Pointer Networks that leverages the linguistic property of head-final languages. Applying this model to the Korean coreference resolution, we significantly reduce the coreference linking search space. Combining this with Ensemble Knowledge Distillation, we maintain state-of-the-art performance 66.9% of CoNLL F1 on ETRI test set while achieving 2x speedup (30 doc/sec) in document processing time.
Detecting emotion from dialogue is a challenge that has not yet been extensively surveyed. One could consider the emotion of each dialogue turn to be independent, but in this paper, we introduce a hierarchical approach to classify emotion, hypothesizing that the current emotional state depends on previous latent emotions. We benchmark several feature-based classifiers using pre-trained word and emotion embeddings, state-of-the-art end-to-end neural network models, and Gaussian processes for automatic hyper-parameter search. In our experiments, hierarchical architectures consistently give significant improvements, and our best model achieves a 76.77% F1-score on the test set.
Previous research on empathetic dialogue systems has mostly focused on generating responses given certain emotions. However, being empathetic not only requires the ability of generating emotional responses, but more importantly, requires the understanding of user emotions and replying appropriately. In this paper, we propose a novel end-to-end approach for modeling empathy in dialogue systems: Mixture of Empathetic Listeners (MoEL). Our model first captures the user emotions and outputs an emotion distribution. Based on this, MoEL will softly combine the output states of the appropriate Listener(s), which are each optimized to react to certain emotions, and generate an empathetic response. Human evaluations on EMPATHETIC-DIALOGUES dataset confirm that MoEL outperforms multitask training baseline in terms of empathy, relevance, and fluency. Furthermore, the case study on generated responses of different Listeners shows high interpretability of our model.
Despite the surging demands for multilingual task-oriented dialog systems (e.g., Alexa, Google Home), there has been less research done in multilingual or cross-lingual scenarios. Hence, we propose a zero-shot adaptation of task-oriented dialogue system to low-resource languages. To tackle this challenge, we first use a set of very few parallel word pairs to refine the aligned cross-lingual word-level representations. We then employ a latent variable model to cope with the variance of similar sentences across different languages, which is induced by imperfect cross-lingual alignments and inherent differences in languages. Finally, the experimental results show that even though we utilize much less external resources, our model achieves better adaptation performance for natural language understanding task (i.e., the intent detection and slot filling) compared to the current state-of-the-art model in the zero-shot scenario.
In countries that speak multiple main languages, mixing up different languages within a conversation is commonly called code-switching. Previous works addressing this challenge mainly focused on word-level aspects such as word embeddings. However, in many cases, languages share common subwords, especially for closely related languages, but also for languages that are seemingly irrelevant. Therefore, we propose Hierarchical Meta-Embeddings (HME) that learn to combine multiple monolingual word-level and subword-level embeddings to create language-agnostic lexical representations. On the task of Named Entity Recognition for English-Spanish code-switching data, our model achieves the state-of-the-art performance in the multilingual settings. We also show that, in cross-lingual settings, our model not only leverages closely related languages, but also learns from languages with different roots. Finally, we show that combining different subunits are crucial for capturing code-switching entities.
[Multiple-submission] In the midst of a generation widely exposed to and influenced by media entertainment, the NLP research community has shown relatively little attention on the sexist comments in popular TV series. To understand sexism in TV series, we propose a way of collecting distant supervision dataset using Character Persona information with the psychological theories on sexism. We assume that sexist characters from TV shows are more prone to making sexist comments when talking about women, and show that this hypothesis is valid through experiment. Finally, we conduct an interesting analysis on popular TV show characters and successfully identify different shades of sexism that is often overlooked.
Abusive language detection models tend to have a problem of being biased toward identity words of a certain group of people because of imbalanced training datasets. For example, “You are a good woman” was considered “sexist” when trained on an existing dataset. Such model bias is an obstacle for models to be robust enough for practical use. In this work, we measure them on models trained with different datasets, while analyzing the effect of different pre-trained word embeddings and model architectures. We also experiment with three mitigation methods: (1) debiased word embeddings, (2) gender swap data augmentation, and (3) fine-tuning with a larger corpus. These methods can effectively reduce model bias by 90-98% and can be extended to correct model bias in other scenarios.