Jane Yu


2022

pdf bib
Quantifying Adaptability in Pre-trained Language Models with 500 Tasks
Belinda Li | Jane Yu | Madian Khabsa | Luke Zettlemoyer | Alon Halevy | Jacob Andreas
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

When a neural language model (LM) is adapted to perform a new task, what aspects of the task predict the eventual performance of the model? In NLP, systematic features of LM generalization to individual examples are well characterized, but systematic aspects of LM adaptability to new tasks are not nearly as well understood. We present a large-scale empirical study of the features and limits of LM adaptability using a new benchmark, TaskBench500, built from 500 procedurally generated sequence modeling tasks. These tasks combine core aspects of language processing, including lexical semantics, sequence processing, memorization, logical reasoning, and world knowledge. Using TaskBench500, we evaluate three facets of adaptability, finding that: (1) adaptation procedures differ dramatically in their ability to memorize small datasets; (2) within a subset of task types, adaptation procedures exhibit compositional adaptability to complex tasks; and (3) failure to match training label distributions is explained by mismatches in the intrinsic difficulty of predicting individual labels. Our experiments show that adaptability to new tasks, like generalization to new examples, can be systematically described and understood, and we conclude with a discussion of additional aspects of adaptability that could be studied using the new benchmark.

pdf bib
That’s so cute!: The CARE Dataset for Affective Response Detection
Jane Yu | Alon Halevy
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Social media plays an increasing role in our communication with friends and family, and in our consumption of entertainment and information. Hence, to design effective ranking functions for posts on social media, it would be useful to predict the affective responses of a post (e.g., whether it is likely to elicit feelings of entertainment, inspiration, or anger). Similar to work on emotion detection (which focuses on the affect of the publisher of the post), the traditional approach to recognizing affective response would involve an expensive investment in human annotation of training data. We create and publicly release CARE DB, a dataset of 230k social media post annotations according to seven affective responses using the Common Affective Response Expression (CARE) method. The CARE method is a means of leveraging the signal that is present in comments that are posted in response to a post, providing high-precision evidence about the affective response to the post without human annotation. Unlike human annotation, the annotation process we describe here can be iterated upon to expand the coverage of the method, particularly for new affective responses. We present experiments that demonstrate that the CARE annotations compare favorably with crowdsourced annotations. Finally, we use CARE DB to train competitive BERT-based models for predicting affective response as well as emotion detection, demonstrating the utility of the dataset for related tasks.

pdf bib
The Moral Integrity Corpus: A Benchmark for Ethical Dialogue Systems
Caleb Ziems | Jane Yu | Yi-Chia Wang | Alon Halevy | Diyi Yang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conversational agents have come increasingly closer to human competence in open-domain dialogue settings; however, such models can reflect insensitive, hurtful, or entirely incoherent viewpoints that erode a user’s trust in the moral integrity of the system. Moral deviations are difficult to mitigate because moral judgments are not universal, and there may be multiple competing judgments that apply to a situation simultaneously. In this work, we introduce a new resource, not to authoritatively resolve moral ambiguities, but instead to facilitate systematic understanding of the intuitions, values and moral judgments reflected in the utterances of dialogue systems. The Moral Integrity Corpus, MIC, is such a resource, which captures the moral assumptions of 38k prompt-reply pairs, using 99k distinct Rules of Thumb (RoTs). Each RoT reflects a particular moral conviction that can explain why a chatbot’s reply may appear acceptable or problematic. We further organize RoTs with a set of 9 moral and social attributes and benchmark performance for attribute classification. Most importantly, we show that current neural language models can automatically generate new RoTs that reasonably describe previously unseen interactions, but they still struggle with certain scenarios. Our findings suggest that MIC will be a useful resource for understanding and language models’ implicit moral assumptions and flexibly benchmarking the integrity of conversational agents. To download the data, see https://github.com/GT-SALT/mic