Jannis Bulian


2022

pdf bib
Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation
Jannis Bulian | Christian Buck | Wojciech Gajewski | Benjamin Börschinger | Tal Schuster
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The predictions of question answering (QA) systems are typically evaluated against manually annotated finite sets of one or more answers. This leads to a coverage limitation that results in underestimating the true performance of systems, and is typically addressed by extending over exact match (EM) with predefined rules or with the token-level F1 measure. In this paper, we present the first systematic conceptual and data-driven analysis to examine the shortcomings of token-level equivalence measures. To this end, we define the asymmetric notion of answer equivalence (AE), accepting answers that are equivalent to or improve over the reference, and publish over 23k human judgements for candidates produced by multiple QA systems on SQuAD.Through a careful analysis of this data, we reveal and quantify several concrete limitations of the F1 measure, such as a false impression of graduality, or missing dependence on the question. Since collecting AE annotations for each evaluated model is expensive, we learn a BERT matching (BEM) measure to approximate this task. Being a simpler task than QA, we find BEM to provide significantly better AE approximations than F1, and to more accurately reflect the performance of systems. Finally, we demonstrate the practical utility of AE and BEM on the concrete application of minimal accurate prediction sets, reducing the number of required answers by up to X2.6.

2021

pdf bib
Recognizing Multimodal Entailment
Cesar Ilharco | Afsaneh Shirazi | Arjun Gopalan | Arsha Nagrani | Blaz Bratanic | Chris Bregler | Christina Funk | Felipe Ferreira | Gabriel Barcik | Gabriel Ilharco | Georg Osang | Jannis Bulian | Jared Frank | Lucas Smaira | Qin Cao | Ricardo Marino | Roma Patel | Thomas Leung | Vaiva Imbrasaite
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Tutorial Abstracts

How information is created, shared and consumed has changed rapidly in recent decades, in part thanks to new social platforms and technologies on the web. With ever-larger amounts of unstructured and limited labels, organizing and reconciling information from different sources and modalities is a central challenge in machine learning. This cutting-edge tutorial aims to introduce the multimodal entailment task, which can be useful for detecting semantic alignments when a single modality alone does not suffice for a whole content understanding. Starting with a brief overview of natural language processing, computer vision, structured data and neural graph learning, we lay the foundations for the multimodal sections to follow. We then discuss recent multimodal learning literature covering visual, audio and language streams, and explore case studies focusing on tasks which require fine-grained understanding of visual and linguistic semantics question answering, veracity and hatred classification. Finally, we introduce a new dataset for recognizing multimodal entailment, exploring it in a hands-on collaborative section. Overall, this tutorial gives an overview of multimodal learning, introduces a multimodal entailment dataset, and encourages future research in the topic.

pdf bib
Fool Me Twice: Entailment from Wikipedia Gamification
Julian Eisenschlos | Bhuwan Dhingra | Jannis Bulian | Benjamin Börschinger | Jordan Boyd-Graber
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We release FoolMeTwice (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other popular entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and the game code.