Janvijay Singh


pdf bib
Geographic Citation Gaps in NLP Research
Mukund Rungta | Janvijay Singh | Saif M. Mohammad | Diyi Yang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In a fair world, people have equitable opportunities to education, to conduct scientific research, to publish, and to get credit for their work, regardless of where they live. However, it is common knowledge among researchers that a vast number of papers accepted at top NLP venues come from a handful of western countries and (lately) China; whereas, very few papers from Africa and South America get published. Similar disparities are also believed to exist for paper citation counts. In the spirit of “what we do not measure, we cannot improve”, this work asks a series of questions on the relationship between geographical location and publication success (acceptance in top NLP venues and citation impact). We first created a dataset of 70,000 papers from the ACL Anthology, extracted their meta-information, andgenerated their citation network. We then show that not only are there substantial geographical disparities in paper acceptance and citation but also that these disparities persist even when controlling for a number of variables such as venue of publication and sub-field of NLP. Further, despite some steps taken by the NLP community to improve geographical diversity, we show that the disparity in publication metrics across locations is still on an increasing trend since the early 2000s. We release our code and dataset here: https://github.com/iamjanvijay/acl-cite-net


pdf bib
PublishInCovid19 at WNUT 2020 Shared Task-1: Entity Recognition in Wet Lab Protocols using Structured Learning Ensemble and Contextualised Embeddings
Janvijay Singh | Anshul Wadhawan
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

In this paper, we describe the approach that we employed to address the task of Entity Recognition over Wet Lab Protocols - a shared task in EMNLP WNUT-2020 Workshop. Our approach is composed of two phases. In the first phase, we experiment with various contextualised word embeddings (like Flair, BERT-based) and a BiLSTM-CRF model to arrive at the best-performing architecture. In the second phase, we create an ensemble composed of eleven BiLSTM-CRF models. The individual models are trained on random train-validation splits of the complete dataset. Here, we also experiment with different output merging schemes, including Majority Voting and Structured Learning Ensembling (SLE). Our final submission achieved a micro F1-score of 0.8175 and 0.7757 for the partial and exact match of the entity spans, respectively. We were ranked first and second, in terms of partial and exact match, respectively.

pdf bib
PublishInCovid19 at the FinSBD-2 Task: Sentence and List Extraction in Noisy PDF Text Using a Hybrid Deep Learning and Rule-Based Approach
Janvijay Singh
Proceedings of the Second Workshop on Financial Technology and Natural Language Processing