Javier Álvez

Also published as: Javier Alvez


2020

pdf bib
Towards modelling SUMO attributes through WordNet adjectives: a Case Study on Qualities
Itziar Gonzalez-Dios | Javier Alvez | German Rigau
Proceedings of the LREC 2020 Workshop on Multimodal Wordnets (MMW2020)

Previous studies have shown that the knowledge about attributes and properties in the SUMO ontology and its mapping to WordNet adjectives lacks of an accurate and complete characterization. A proper characterization of this type of knowledge is required to perform formal commonsense reasoning based on the SUMO properties, for instance to distinguish one concept from another based on their properties. In this context, we propose a new semi-automatic approach to model the knowledge about properties and attributes in SUMO by exploiting the information encoded in WordNet adjectives and its mapping to SUMO. To that end, we considered clusters of semantically related groups of WordNet adjectival and nominal synsets. Based on these clusters, we propose a new semi-automatic model for SUMO attributes and their mapping to WordNet, which also includes polarity information. In this paper, as an exploratory approach, we focus on qualities.

2019

pdf bib
Commonsense Reasoning Using WordNet and SUMO: a Detailed Analysis
Javier Álvez | Itziar Gonzalez-Dios | German Rigau
Proceedings of the 10th Global Wordnet Conference

We describe a detailed analysis of a sample of large benchmark of commonsense reasoning problems that has been automatically obtained from WordNet, SUMO and their mapping. The objective is to provide a better assessment of the quality of both the benchmark and the involved knowledge resources for advanced commonsense reasoning tasks. By means of this analysis, we are able to detect some knowledge misalignments, mapping errors and lack of knowledge and resources. Our final objective is the extraction of some guidelines towards a better exploitation of this commonsense knowledge framework by the improvement of the included resources.

2018

pdf bib
Cross-checking WordNet and SUMO Using Meronymy
Javier Álvez | Itziar Gonzalez-Dios | German Rigau
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Towards Cross-checking WordNet and SUMO Using Meronymy
Javier Álvez | German Rigau
Proceedings of the 9th Global Wordnet Conference

We describe the practical application of a black-box testing methodology for the validation of the knowledge encoded in WordNet, SUMO and their mapping by using automated theorem provers. In this paper,weconcentrateonthepart-whole information provided by WordNet and create a large set of tests on the basis of few question patterns. From our preliminary evaluation results, we report on some of the detected inconsistencies.

2008

pdf bib
Complete and Consistent Annotation of WordNet using the Top Concept Ontology
Javier Álvez | Jordi Atserias | Jordi Carrera | Salvador Climent | Egoitz Laparra | Antoni Oliver | German Rigau
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

This paper presents the complete and consistent ontological annotation of the nominal part of WordNet. The annotation has been carried out using the semantic features defined in the EuroWordNet Top Concept Ontology and made available to the NLP community. Up to now only an initial core set of 1,024 synsets, the so-called Base Concepts, was ontologized in such a way. The work has been achieved by following a methodology based on an iterative and incremental expansion of the initial labeling through the hierarchy while setting inheritance blockage points. Since this labeling has been set on the EuroWordNet’s Interlingual Index (ILI), it can be also used to populate any other wordnet linked to it through a simple porting process. This feature-annotated WordNet is intended to be useful for a large number of semantic NLP tasks and for testing for the first time componential analysis on real environments. Moreover, the quantitative analysis of the work shows that more than 40% of the nominal part of WordNet is involved in structure errors or inadequacies.