2024
pdf
bib
abs
ReproHum #0927-3: Reproducing The Human Evaluation Of The DExperts Controlled Text Generation Method
Javier González Corbelle
|
Ainhoa Vivel Couso
|
Jose Maria Alonso-Moral
|
Alberto Bugarín-Diz
Proceedings of the Fourth Workshop on Human Evaluation of NLP Systems (HumEval) @ LREC-COLING 2024
This paper presents a reproduction study aimed at reproducing and validating a human NLP evaluation performed for the DExperts text generation method. The original study introduces DExperts, a controlled text generation method, evaluated using non-toxic prompts from the RealToxicityPrompts dataset. Our reproduction study aims to reproduce the human evaluation of the continuations generated by DExperts in comparison with four baseline methods, in terms of toxicity, topicality, and fluency. We first describe the agreed approach for reproduction within the ReproHum project and detail the configuration of the original evaluation, including necessary adaptations for reproduction. Then, we make a comparison of our reproduction results with those reported in the reproduced paper. Interestingly, we observe how the human evaluators in our experiment appreciate higher quality in the texts generated by DExperts in terms of less toxicity and better fluency. All in all, new scores are higher, also for the baseline methods. This study contributes to ongoing efforts in ensuring the reproducibility and reliability of findings in NLP evaluation and emphasizes the critical role of robust methodologies in advancing the field.
2023
pdf
bib
abs
Some lessons learned reproducing human evaluation of a data-to-text system
Javier González Corbelle
|
Jose Alonso
|
Alberto Bugarín-Diz
Proceedings of the 3rd Workshop on Human Evaluation of NLP Systems
This paper presents a human evaluation reproduction study regarding the data-to-text generation task. The evaluation focuses in counting the supported and contradicting facts generated by a neural data-to-text model with a macro planning stage. The model is tested generating sport summaries for the ROTOWIRE dataset. We first describe the approach to reproduction that is agreed in the context of the ReproHum project. Then, we detail the entire configuration of the original human evaluation and the adaptations that had to be made to reproduce such an evaluation. Finally, we compare the reproduction results with those reported in the paper that was taken as reference.
pdf
bib
abs
Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP
Anya Belz
|
Craig Thomson
|
Ehud Reiter
|
Gavin Abercrombie
|
Jose M. Alonso-Moral
|
Mohammad Arvan
|
Anouck Braggaar
|
Mark Cieliebak
|
Elizabeth Clark
|
Kees van Deemter
|
Tanvi Dinkar
|
Ondřej Dušek
|
Steffen Eger
|
Qixiang Fang
|
Mingqi Gao
|
Albert Gatt
|
Dimitra Gkatzia
|
Javier González-Corbelle
|
Dirk Hovy
|
Manuela Hürlimann
|
Takumi Ito
|
John D. Kelleher
|
Filip Klubicka
|
Emiel Krahmer
|
Huiyuan Lai
|
Chris van der Lee
|
Yiru Li
|
Saad Mahamood
|
Margot Mieskes
|
Emiel van Miltenburg
|
Pablo Mosteiro
|
Malvina Nissim
|
Natalie Parde
|
Ondřej Plátek
|
Verena Rieser
|
Jie Ruan
|
Joel Tetreault
|
Antonio Toral
|
Xiaojun Wan
|
Leo Wanner
|
Lewis Watson
|
Diyi Yang
Proceedings of the Fourth Workshop on Insights from Negative Results in NLP
We report our efforts in identifying a set of previous human evaluations in NLP that would be suitable for a coordinated study examining what makes human evaluations in NLP more/less reproducible. We present our results and findings, which include that just 13% of papers had (i) sufficiently low barriers to reproduction, and (ii) enough obtainable information, to be considered for reproduction, and that all but one of the experiments we selected for reproduction was discovered to have flaws that made the meaningfulness of conducting a reproduction questionable. As a result, we had to change our coordinated study design from a reproduce approach to a standardise-then-reproduce-twice approach. Our overall (negative) finding that the great majority of human evaluations in NLP is not repeatable and/or not reproducible and/or too flawed to justify reproduction, paints a dire picture, but presents an opportunity for a rethink about how to design and report human evaluations in NLP.
2022
pdf
bib
Dealing with hallucination and omission in neural Natural Language Generation: A use case on meteorology.
Javier González Corbelle
|
Alberto Bugarín-Diz
|
Jose Alonso-Moral
|
Juan Taboada
Proceedings of the 15th International Conference on Natural Language Generation
2020
pdf
bib
abs
A proof of concept on triangular test evaluation for Natural Language Generation
Javier González Corbelle
|
José María Alonso Moral
|
Alberto Bugarín Diz
Proceedings of the 1st Workshop on Evaluating NLG Evaluation
The evaluation of Natural Language Generation (NLG) systems has recently aroused much interest in the research community, since it should address several challenging aspects, such as readability of the generated texts, adequacy to the user within a particular context and moment and linguistic quality-related issues (e.g., correctness, coherence, understandability), among others. In this paper, we propose a novel technique for evaluating NLG systems that is inspired on the triangular test used in the field of sensory analysis. This technique allows us to compare two texts generated by different subjects and to i) determine whether statistically significant differences are detected between them when evaluated by humans and ii) quantify to what extent the number of evaluators plays an important role in the sensitivity of the results. As a proof of concept, we apply this evaluation technique in a real use case in the field of meteorology, showing the advantages and disadvantages of our proposal.