Jennifer Dai
2017
The Labeled Segmentation of Printed Books
Lara McConnaughey
|
Jennifer Dai
|
David Bamman
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
We introduce the task of book structure labeling: segmenting and assigning a fixed category (such as Table of Contents, Preface, Index) to the document structure of printed books. We manually annotate the page-level structural categories for a large dataset totaling 294,816 pages in 1,055 books evenly sampled from 1750-1922, and present empirical results comparing the performance of several classes of models. The best-performing model, a bidirectional LSTM with rich features, achieves an overall accuracy of 95.8 and a class-balanced macro F-score of 71.4.