Jennifer Hu


2022

pdf bib
Predicting scalar diversity with context-driven uncertainty over alternatives
Jennifer Hu | Roger Levy | Sebastian Schuster
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

Scalar implicature (SI) arises when a speaker uses an expression (e.g., “some”) that is semantically compatible with a logically stronger alternative on the same scale (e.g., “all”), leading the listener to infer that they did not intend to convey the stronger meaning. Prior work has demonstrated that SI rates are highly variable across scales, raising the question of what factors determine the SI strength for a particular scale. Here, we test the hypothesis that SI rates depend on the listener’s confidence in the underlying scale, which we operationalize as uncertainty over the distribution of possible alternatives conditioned on the context. We use a T5 model fine-tuned on a text infilling task to estimate this distribution. We find that scale uncertainty predicts human SI rates, measured as entropy over the sampled alternatives and over latent classes among alternatives in sentence embedding space. Furthermore, we do not find a significant effect of the surprisal of the strong scalemate. Our results suggest that pragmatic inferences depend on listeners’ context-driven uncertainty over alternatives.

2021

pdf bib
A Rate–Distortion view of human pragmatic reasoning?
Noga Zaslavsky | Jennifer Hu | Roger P. Levy
Proceedings of the Society for Computation in Linguistics 2021

pdf bib
Controlled Evaluation of Grammatical Knowledge in Mandarin Chinese Language Models
Yiwen Wang | Jennifer Hu | Roger Levy | Peng Qian
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Prior work has shown that structural supervision helps English language models learn generalizations about syntactic phenomena such as subject-verb agreement. However, it remains unclear if such an inductive bias would also improve language models’ ability to learn grammatical dependencies in typologically different languages. Here we investigate this question in Mandarin Chinese, which has a logographic, largely syllable-based writing system; different word order; and sparser morphology than English. We train LSTMs, Recurrent Neural Network Grammars, Transformer language models, and Transformer-parameterized generative parsing models on two Mandarin Chinese datasets of different sizes. We evaluate the models’ ability to learn different aspects of Mandarin grammar that assess syntactic and semantic relationships. We find suggestive evidence that structural supervision helps with representing syntactic state across intervening content and improves performance in low-data settings, suggesting that the benefits of hierarchical inductive biases in acquiring dependency relationships may extend beyond English.

2020

pdf bib
A Systematic Assessment of Syntactic Generalization in Neural Language Models
Jennifer Hu | Jon Gauthier | Peng Qian | Ethan Wilcox | Roger Levy
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While state-of-the-art neural network models continue to achieve lower perplexity scores on language modeling benchmarks, it remains unknown whether optimizing for broad-coverage predictive performance leads to human-like syntactic knowledge. Furthermore, existing work has not provided a clear picture about the model properties required to produce proper syntactic generalizations. We present a systematic evaluation of the syntactic knowledge of neural language models, testing 20 combinations of model types and data sizes on a set of 34 English-language syntactic test suites. We find substantial differences in syntactic generalization performance by model architecture, with sequential models underperforming other architectures. Factorially manipulating model architecture and training dataset size (1M-40M words), we find that variability in syntactic generalization performance is substantially greater by architecture than by dataset size for the corpora tested in our experiments. Our results also reveal a dissociation between perplexity and syntactic generalization performance.

pdf bib
SyntaxGym: An Online Platform for Targeted Evaluation of Language Models
Jon Gauthier | Jennifer Hu | Ethan Wilcox | Peng Qian | Roger Levy
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Targeted syntactic evaluations have yielded insights into the generalizations learned by neural network language models. However, this line of research requires an uncommon confluence of skills: both the theoretical knowledge needed to design controlled psycholinguistic experiments, and the technical proficiency needed to train and deploy large-scale language models. We present SyntaxGym, an online platform designed to make targeted evaluations accessible to both experts in NLP and linguistics, reproducible across computing environments, and standardized following the norms of psycholinguistic experimental design. This paper releases two tools of independent value for the computational linguistics community: 1. A website, syntaxgym.org, which centralizes the process of targeted syntactic evaluation and provides easy tools for analysis and visualization; 2. Two command-line tools, ‘syntaxgym‘ and ‘lm-zoo‘, which allow any user to reproduce targeted syntactic evaluations and general language model inference on their own machine.

pdf bib
A closer look at the performance of neural language models on reflexive anaphor licensing
Jennifer Hu | Sherry Yong Chen | Roger Levy
Proceedings of the Society for Computation in Linguistics 2020

2018

pdf bib
Generating Bilingual Pragmatic Color References
Will Monroe | Jennifer Hu | Andrew Jong | Christopher Potts
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Contextual influences on language often exhibit substantial cross-lingual regularities; for example, we are more verbose in situations that require finer distinctions. However, these regularities are sometimes obscured by semantic and syntactic differences. Using a newly-collected dataset of color reference games in Mandarin Chinese (which we release to the public), we confirm that a variety of constructions display the same sensitivity to contextual difficulty in Chinese and English. We then show that a neural speaker agent trained on bilingual data with a simple multitask learning approach displays more human-like patterns of context dependence and is more pragmatically informative than its monolingual Chinese counterpart. Moreover, this is not at the expense of language-specific semantic understanding: the resulting speaker model learns the different basic color term systems of English and Chinese (with noteworthy cross-lingual influences), and it can identify synonyms between the two languages using vector analogy operations on its output layer, despite having no exposure to parallel data.