Jeonghoon Kim
2024
Improving Multi-hop Logical Reasoning in Knowledge Graphs with Context-Aware Query Representation Learning
Jeonghoon Kim
|
Heesoo Jung
|
Hyeju Jang
|
Hogun Park
Findings of the Association for Computational Linguistics: ACL 2024
Multi-hop logical reasoning on knowledge graphs is a pivotal task in natural language processing, with numerous approaches aiming to answer First-Order Logic (FOL) queries. Recent geometry (e.g., box, cone) and probability (e.g., beta distribution)-based methodologies have effectively addressed complex FOL queries. However, a common challenge across these methods lies in determining accurate geometric bounds or probability parameters for these queries. The challenge arises because existing methods rely on linear sequential operations within their computation graphs, overlooking the logical structure of the query and the relation-induced information that can be gleaned from the relations of the query, which we call the context of the query. To address the problem, we propose a model-agnostic methodology that enhances the effectiveness of existing multi-hop logical reasoning approaches by fully integrating the context of the FOL query graph. Our approach distinctively discerns (1) the structural context inherent to the query structure and (2) the relation-induced context unique to each node in the query graph as delineated in the corresponding knowledge graph. This dual-context paradigm helps nodes within a query graph attain refined internal representations throughout the multi-hop reasoning steps. Through experiments on two datasets, our method consistently enhances the three multi-hop reasoning foundation models, achieving performance improvements of up to 19.5%. Our codes are available at https://github.com/kjh9503/caqr.
2022
AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of Large-Scale Pre-Trained Language Models
Se Jung Kwon
|
Jeonghoon Kim
|
Jeongin Bae
|
Kang Min Yoo
|
Jin-Hwa Kim
|
Baeseong Park
|
Byeongwook Kim
|
Jung-Woo Ha
|
Nako Sung
|
Dongsoo Lee
Findings of the Association for Computational Linguistics: EMNLP 2022
There are growing interests in adapting large-scale language models using parameter-efficient fine-tuning methods. However, accelerating the model itself and achieving better inference efficiency through model compression has not been thoroughly explored yet.Model compression could provide the benefits of reducing memory footprints, enabling low-precision computations, and ultimately achieving cost-effective inference.To combine parameter-efficient adaptation and model compression, we propose AlphaTuning consisting of post-training quantization of the pre-trained language model and fine-tuning only some parts of quantized parameters for a target task.Specifically, AlphaTuning works by employing binary-coding quantization, which factorizes the full-precision parameters into binary parameters and a separate set of scaling factors.During the adaptation phase, the binary values are frozen for all tasks, while the scaling factors are fine-tuned for the downstream task.We demonstrate that AlphaTuning, when applied to GPT-2 and OPT, performs competitively with full fine-tuning on a variety of downstream tasks while achieving >10x compression ratio under 4-bit quantization and >1,000x reduction in the number of trainable parameters.
Search
Fix data
Co-authors
- Jeongin Bae 1
- Jung-Woo Ha 1
- Hyeju Jang 1
- Heesoo Jung 1
- Jin-Hwa Kim 1
- show all...