Jeongyeon Seo
2024
Typos that Broke the RAG’s Back: Genetic Attack on RAG Pipeline by Simulating Documents in the Wild via Low-level Perturbations
Sukmin Cho
|
Soyeong Jeong
|
Jeongyeon Seo
|
Taeho Hwang
|
Jong C. Park
Findings of the Association for Computational Linguistics: EMNLP 2024
The robustness of recent Large Language Models (LLMs) has become increasingly crucial as their applicability expands across various domains and real-world applications. Retrieval-Augmented Generation (RAG) is a promising solution for addressing the limitations of LLMs, yet existing studies on the robustness of RAG often overlook the interconnected relationships between RAG components or the potential threats prevalent in real-world databases, such as minor textual errors. In this work, we investigate two underexplored aspects when assessing the robustness of RAG: 1) vulnerability to noisy documents through low-level perturbations and 2) a holistic evaluation of RAG robustness. Furthermore, we introduce a novel attack method, the Genetic Attack on RAG (GARAG), which targets these aspects. Specifically, GARAG is designed to reveal vulnerabilities within each component and test the overall system functionality against noisy documents. We validate RAG robustness by applying our GARAG to standard QA datasets, incorporating diverse retrievers and LLMs. The experimental results show that GARAG consistently achieves high attack success rates. Also, it significantly devastates the performance of each component and their synergy, highlighting the substantial risk that minor textual inaccuracies pose in disrupting RAG systems in the real world. Code is available at https://github.com/zomss/GARAG.
2023
Improving Zero-shot Reader by Reducing Distractions from Irrelevant Documents in Open-Domain Question Answering
Sukmin Cho
|
Jeongyeon Seo
|
Soyeong Jeong
|
Jong Park
Findings of the Association for Computational Linguistics: EMNLP 2023
Large language models (LLMs) enable zero-shot approaches in open-domain question answering (ODQA), yet with limited advancements as the reader is compared to the retriever. This study aims at the feasibility of a zero-shot reader that addresses the challenges of computational cost and the need for labeled data. We find that LLMs are distracted due to irrelevant documents in the retrieved set and the overconfidence of the generated answers when they are exploited as zero-shot readers. To tackle these problems, we mitigate the impact of such documents via Distraction-aware Answer Selection (DAS) with a negation-based instruction and score adjustment for proper answer selection. Experimental results show that our approach successfully handles distraction across diverse scenarios, enhancing the performance of zero-shot readers. Furthermore, unlike supervised readers struggling with unseen data, zero-shot readers demonstrate outstanding transferability without any training.