Jérémy Auguste

Also published as: Jeremy Auguste


2019

pdf bib
Analyse faiblement supervisée de conversation en actes de dialogue (Weakly supervised dialog act analysis)
Catherine Thompson | Nicholas Asher | Philippe Muller | Jérémy Auguste
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts

Nous nous intéressons ici à l’analyse de conversation par chat dans un contexte orienté-tâche avec un conseiller technique s’adressant à un client, où l’objectif est d’étiqueter les énoncés en actes de dialogue, pour alimenter des analyses des conversations en aval. Nous proposons une méthode légèrement supervisée à partir d’heuristiques simples, de quelques annotations de développement, et une méthode d’ensemble sur ces règles qui sert à annoter automatiquement un corpus plus large de façon bruitée qui peut servir d’entrainement à un modèle supervisé. Nous comparons cette approche à une approche supervisée classique et montrons qu’elle atteint des résultats très proches, à un coût moindre et tout en étant plus facile à adapter à de nouvelles données.

2018

pdf bib
Handling Normalization Issues for Part-of-Speech Tagging of Online Conversational Text
Géraldine Damnati | Jeremy Auguste | Alexis Nasr | Delphine Charlet | Johannes Heinecke | Frédéric Béchet
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Semantic Frame Parsing for Information Extraction : the CALOR corpus
Gabriel Marzinotto | Jeremy Auguste | Frederic Bechet | Geraldine Damnati | Alexis Nasr
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Evaluation automatique de la satisfaction client à partir de conversations de type “chat” par réseaux de neurones récurrents avec mécanisme d’attention (Customer satisfaction prediction with attention-based RNNs from a chat contact center corpus)
Jeremy Auguste | Delphine Charlet | Géraldine Damnati | Benoit Favre | Frederic Bechet
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

Cet article présente des méthodes permettant l’évaluation de la satisfaction client à partir de très vastes corpus de conversation de type “chat” entre des clients et des opérateurs. Extraire des connaissances dans ce contexte demeure un défi pour les méthodes de traitement automatique des langues de par la dimension interactive et les propriétés de ce nouveau type de langage à l’intersection du langage écrit et parlé. Nous présentons une étude utilisant des réponses à des sondages utilisateurs comme supervision faible permettant de prédire la satisfaction des usagers d’un service en ligne d’assistance technique et commerciale.

pdf bib
Annotation en Actes de Dialogue pour les Conversations d’Assistance en Ligne (Dialog Acts Annotations for Online Chats)
Robin Perrotin | Alexis Nasr | Jeremy Auguste
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

Les conversations techniques en ligne sont un type de productions linguistiques qui par de nombreux aspects se démarquent des objets plus usuellement étudiés en traitement automatique des langues : il s’agit de dialogues écrits entre deux locuteurs qui servent de support à la résolution coopérative des problèmes des usagers. Nous proposons de décrire ici ces conversations par un étiquetage en actes de dialogue spécifiquement conçu pour les conversations en ligne. Différents systèmes de prédictions ont été évalués ainsi qu’une méthode permettant de s’abstraire des spécificités lexicales du corpus d’apprentissage.

2017

pdf bib
Evaluation of word embeddings against cognitive processes: primed reaction times in lexical decision and naming tasks
Jeremy Auguste | Arnaud Rey | Benoit Favre
Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP

This work presents a framework for word similarity evaluation grounded on cognitive sciences experimental data. Word pair similarities are compared to reaction times of subjects in large scale lexical decision and naming tasks under semantic priming. Results show that GloVe embeddings lead to significantly higher correlation with experimental measurements than other controlled and off-the-shelf embeddings, and that the choice of a training corpus is less important than that of the algorithm. Comparison of rankings with other datasets shows that the cognitive phenomenon covers more aspects than simply word relatedness or similarity.