Jessica MacBride


2022

pdf bib
Taxonomy Builder: a Data-driven and User-centric Tool for Streamlining Taxonomy Construction
Mihai Surdeanu | John Hungerford | Yee Seng Chan | Jessica MacBride | Benjamin Gyori | Andrew Zupon | Zheng Tang | Haoling Qiu | Bonan Min | Yan Zverev | Caitlin Hilverman | Max Thomas | Walter Andrews | Keith Alcock | Zeyu Zhang | Michael Reynolds | Steven Bethard | Rebecca Sharp | Egoitz Laparra
Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing

An existing domain taxonomy for normalizing content is often assumed when discussing approaches to information extraction, yet often in real-world scenarios there is none. When one does exist, as the information needs shift, it must be continually extended. This is a slow and tedious task, and one which does not scale well. Here we propose an interactive tool that allows a taxonomy to be built or extended rapidly and with a human in the loop to control precision. We apply insights from text summarization and information extraction to reduce the search space dramatically, then leverage modern pretrained language models to perform contextualized clustering of the remaining concepts to yield candidate nodes for the user to review. We show this allows a user to consider as many as 200 taxonomy concept candidates an hour, to quickly build or extend a taxonomy to better fit information needs.

2021

pdf bib
ExcavatorCovid: Extracting Events and Relations from Text Corpora for Temporal and Causal Analysis for COVID-19
Bonan Min | Benjamin Rozonoyer | Haoling Qiu | Alexander Zamanian | Nianwen Xue | Jessica MacBride
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Timely responses from policy makers to mitigate the impact of the COVID-19 pandemic rely on a comprehensive grasp of events, their causes, and their impacts. These events are reported at such a speed and scale as to be overwhelming. In this paper, we present ExcavatorCovid, a machine reading system that ingests open-source text documents (e.g., news and scientific publications), extracts COVID-19 related events and relations between them, and builds a Temporal and Causal Analysis Graph (TCAG). Excavator will help government agencies alleviate the information overload, understand likely downstream effects of political and economic decisions and events related to the pandemic, and respond in a timely manner to mitigate the impact of COVID-19. We expect the utility of Excavator to outlive the COVID-19 pandemic: analysts and decision makers will be empowered by Excavator to better understand and solve complex problems in the future. A demonstration video is available at https://vimeo.com/528619007.