Jey Lau


2023

pdf bib
DeltaScore: Fine-Grained Story Evaluation with Perturbations
Zhuohan Xie | Miao Li | Trevor Cohn | Jey Lau
Findings of the Association for Computational Linguistics: EMNLP 2023

Numerous evaluation metrics have been developed for natural language generation tasks, but their effectiveness in evaluating stories is limited as they are not specifically tailored to assess intricate aspects of storytelling, such as fluency and interestingness. In this paper, we introduce DeltaScore, a novel methodology that uses perturbation techniques for the evaluation of nuanced story aspects. We posit that the extent to which a story excels in a specific aspect (e.g., fluency) correlates with the magnitude of its susceptibility to particular perturbations (e.g., the introduction of typos). Given this, we measure the quality of an aspect by calculating the likelihood difference between pre- and post-perturbation states using pre-trained language models. We compare DeltaScore with existing metrics on storytelling datasets from two domains in five fine-grained story aspects: fluency, coherence, relatedness, logicality, and interestingness. DeltaScore demonstrates strong performance, revealing a surprising finding that one specific perturbation proves highly effective in capturing multiple aspects. Source code is available on our GitHub repository.

pdf bib
Summarizing Multiple Documents with Conversational Structure for Meta-Review Generation
Miao Li | Eduard Hovy | Jey Lau
Findings of the Association for Computational Linguistics: EMNLP 2023

We present PeerSum, a novel dataset for generating meta-reviews of scientific papers. The meta-reviews can be interpreted as abstractive summaries of reviews, multi-turn discussions and the paper abstract. These source documents have a rich inter-document relationship with an explicit hierarchical conversational structure, cross-references and (occasionally) conflicting information. To introduce the structural inductive bias into pre-trained language models, we introduce RAMMER (Relationship-aware Multi-task Meta-review Generator), a model that uses sparse attention based on the conversational structure and a multi-task training objective that predicts metadata features (e.g., review ratings). Our experimental results show that RAMMER outperforms other strong baseline models in terms of a suite of automatic evaluation metrics. Further analyses, however, reveal that RAMMER and other models struggle to handle conflicts in source documents, suggesting meta-review generation is a challenging task and a promising avenue for further research.