Ji-Ping Wang


2020

pdf bib
Generative Data Augmentation for Commonsense Reasoning
Yiben Yang | Chaitanya Malaviya | Jared Fernandez | Swabha Swayamdipta | Ronan Le Bras | Ji-Ping Wang | Chandra Bhagavatula | Yejin Choi | Doug Downey
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent advances in commonsense reasoning depend on large-scale human-annotated training sets to achieve peak performance. However, manual curation of training sets is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit to. We propose a novel generative data augmentation technique, G-DAUGˆC, that aims to achieve more accurate and robust learning in a low-resource setting. Our approach generates synthetic examples using pretrained language models and selects the most informative and diverse set of examples for data augmentation. On experiments with multiple commonsense reasoning benchmarks, G-DAUGˆC consistently outperforms existing data augmentation methods based on back-translation, establishing a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA, as well as enhances out-of-distribution generalization, proving to be robust against adversaries or perturbations. Our analysis demonstrates that G-DAUGˆC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.

2019

pdf bib
Using Large Corpus N-gram Statistics to Improve Recurrent Neural Language Models
Yiben Yang | Ji-Ping Wang | Doug Downey
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recurrent neural network language models (RNNLM) form a valuable foundation for many NLP systems, but training the models can be computationally expensive, and may take days to train on a large corpus. We explore a technique that uses large corpus n-gram statistics as a regularizer for training a neural network LM on a smaller corpus. In experiments with the Billion-Word and Wikitext corpora, we show that the technique is effective, and more time-efficient than simply training on a larger sequential corpus. We also introduce new strategies for selecting the most informative n-grams, and show that these boost efficiency.

2018

pdf bib
Extracting Commonsense Properties from Embeddings with Limited Human Guidance
Yiben Yang | Larry Birnbaum | Ji-Ping Wang | Doug Downey
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Intelligent systems require common sense, but automatically extracting this knowledge from text can be difficult. We propose and assess methods for extracting one type of commonsense knowledge, object-property comparisons, from pre-trained embeddings. In experiments, we show that our approach exceeds the accuracy of previous work but requires substantially less hand-annotated knowledge. Further, we show that an active learning approach that synthesizes common-sense queries can boost accuracy.